interval.logitsurv.discrete | R Documentation |
We consider the cumulative odds model
P(T \leq t | x) = \frac{G(t) \exp(x \beta) }{1 + G(t) exp( x \beta) }
or equivalently
logit(P(T \leq t | x)) = log(G(t)) + x \beta
and we can thus also compute the probability of surviving
P(T >t | x) = \frac{1}{1 + G(t) exp( x \beta) }
interval.logitsurv.discrete(
formula,
data,
beta = NULL,
no.opt = FALSE,
method = "NR",
stderr = TRUE,
weights = NULL,
offsets = NULL,
exp.link = 1,
increment = 1,
...
)
formula |
formula |
data |
data |
beta |
starting values |
no.opt |
optimization TRUE/FALSE |
method |
NR, nlm |
stderr |
to return only estimate |
weights |
weights following id for GLM |
offsets |
following id for GLM |
exp.link |
parametrize increments exp(alpha) > 0 |
increment |
using increments dG(t)=exp(alpha) as parameters |
... |
Additional arguments to lower level funtions lava::NR optimizer or nlm |
The baseline G(t)
is written as cumsum(exp(\alpha))
and this is not the standard
parametrization that takes log of G(t)
as the parameters. Note that the regression
coefficients are describing the probability of dying before or at time t.
Input are intervals given by ]t_l,t_r] where t_r can be infinity for right-censored intervals When truly discrete ]0,1] will be an observation at 1, and ]j,j+1] will be an observation at j+1. Can be used for fitting the usual ordinal regression model (with logit link) that in contrast, however, describes the probibility of surviving time t (thus leads to -beta).
Likelihood is maximized:
\prod P(T_i >t_{il} | x) - P(T_i> t_{ir}| x)
Thomas Scheike
data(ttpd)
dtable(ttpd,~entry+time2)
out <- interval.logitsurv.discrete(Interval(entry,time2)~X1+X2+X3+X4,ttpd)
summary(out)
pred <- predictlogitSurvd(out,se=FALSE)
plotSurvd(pred)
ttpd <- dfactor(ttpd,fentry~entry)
out <- cumoddsreg(fentry~X1+X2+X3+X4,ttpd)
summary(out)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.