#################### Binomial case ####################
library(aglm)
library(faraway)
## Read data
xy <- nes96
## Split data into train and test
n <- nrow(xy) # Sample size.
set.seed(2018) # For reproducibility.
test.id <- sample(n, round(n/5)) # ID numbders for test data.
test <- xy[test.id,] # test is the data.frame for testing.
train <- xy[-test.id,] # train is the data.frame for training.
x <- train[, c("popul", "TVnews", "selfLR", "ClinLR", "DoleLR", "PID", "age", "educ", "income")]
y <- train$vote
newx <- test[, c("popul", "TVnews", "selfLR", "ClinLR", "DoleLR", "PID", "age", "educ", "income")]
## Fit the model
model <- aglm(x, y, family="binomial")
## Make the confusion matrix
lambda <- 0.1
y_true <- test$vote
y_pred <- levels(y_true)[as.integer(predict(model, newx, s=lambda, type="class"))]
print(table(y_true, y_pred))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.