quant_bin_1d: One-Dimensional Empirical Quantile Binning

Description Usage Arguments Value Examples

Description

used for binning the numeric values by empirical quantile

Usage

1
quant_bin_1d(xs, nbin, output = "data", jit = 0)

Arguments

xs

Numeric vector of values to be binned

nbin

An integer defining the number of bins to partion the xs into

output

Output Structure: "data" for just the binned data,"definition" for a list of bin centers and boundaries, or "both" for list containing both data and definition

jit

non-negative value to specify a random uniform jitter to the observed values prior to partitioning by quantiles.

Value

output as specified

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
quant_bin_1d(ggplot2::diamonds$price,4,output="data")
quant_bin_1d(ggplot2::diamonds$price,4,output="definition")
quant_bin_1d(runif(1000,0,10),nbin=4,output="both")

Speed test
load("~/onePercentSample.Rdata")
timer <- Sys.time()
quant_bin_1d(onePercentSample$total_amount,100,output="data", jit=.00001)
Sys.time()-timer
Note: using .bincode() this take ~2 seconds instead of ~10 seconds with for loop overwrite from original

kmaurer/binsemble documentation built on May 7, 2019, 9:50 p.m.