#'
#'
#' perform GWAS and GPS
#'
#’ @param Y a sample (row) by phenotype (column) data.frame
#’ @param G = NULL genotypes in HapMap format
#’ @param GD = NULL genotypes in numeric format
#’ @param GM = NULL genotype map for genotypes in numeric format (GD)
#’ @param KI = NULL kinship data.frame (sample by sample matrix)
#’ @param Z = NULL
#’ @param CV = NULL covariate valiables
#' @param CV.Inheritance = NULL
#' @param GP = NULL
#' @param GK = NULL
#' @param testY = NULL
#’ @param kinship.algorithm = “Zhang”
#'
#'
#'
#' @return out
#'
#' A list containing the following elements.
#'
#' GD a data.frame containing genotypes in numeric format
#' GM a data.frame containing a genotype map
#' G a data.frame containing genotypes in hapmap format
#' kinship a data.frame containing a kinship matrix
#' chor_taxa a character vector
#'
#'
#'
`GAPIT` <- function(
Y = NULL,
G=NULL,
GD=NULL,
GM=NULL,
KI=NULL,
Z=NULL,
CV=NULL,
CV.Inheritance=NULL,
GP=NULL,
GK=NULL,
testY=NULL,
group.from=1000000,
group.to=1000000,
group.by=20,
DPP=100000,
kinship.cluster="average",
kinship.group='Mean',
kinship.algorithm="VanRaden",
buspred=FALSE,
lmpred=FALSE,
FDRcut=FALSE,
bin.from=10000,
bin.to=10000,
bin.by=10000,
inclosure.from=10,
inclosure.to=10,
inclosure.by=10,
SNP.P3D=TRUE,
SNP.effect="Add",
SNP.impute="Middle",
PCA.total=0,
SNP.fraction = 1,
seed = NULL,
BINS = 20,
SNP.test=TRUE,
SNP.MAF=0,
FDR.Rate = 1,
SNP.FDR=1,
SNP.permutation=FALSE,
SNP.CV=NULL,
SNP.robust="GLM",
file.from=1,
file.to=1,
file.total=NULL,
file.fragment = 99999,
file.path=NULL,
file.G=NULL,
file.Ext.G=NULL,
file.GD=NULL,
file.GM=NULL,
file.Ext.GD=NULL,
file.Ext.GM=NULL,
ngrid = 100,
llim = -10,
ulim = 10,
esp = 1e-10,
LD.chromosome=NULL,
LD.location=NULL,
LD.range=NULL,
PCA.col=NULL,
PCA.3d=FALSE,
NJtree.group=NULL,
NJtree.type=c("fan","unrooted"),
sangwich.top=NULL,
sangwich.bottom=NULL,
QC=TRUE,
GTindex=NULL,
LD=0.1,
plot.bin=10^5,
file.output=TRUE,
cutOff=0.05,
Model.selection = FALSE,
output.numerical = FALSE,
output.hapmap = FALSE,
Create.indicator = FALSE,
Multi_iter=FALSE,
num_regwas=10,
opt="extBIC",
QTN=NULL,
QTN.round=1,
QTN.limit=0,
QTN.update=TRUE,
QTN.method="Penalty",
Major.allele.zero = FALSE,
Random.model=FALSE,
method.GLM="FarmCPU.LM",
method.sub="reward",
method.sub.final="reward",
method.bin="static",
bin.size=c(1000000),
bin.selection=c(10,20,50,100,200,500,1000),
memo=NULL,
Prior=NULL,
ncpus=1,
maxLoop=3,
threshold.output=.01,
Inter.Plot=FALSE,
Inter.type=c("m","q"),
WS=c(1e0,1e3,1e4,1e5,1e6,1e7),
alpha=c(.01,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,1),
maxOut=100,QTN.position=NULL,CG=NULL,
converge=1,
iteration.output=FALSE,
acceleration=0,
iteration.method="accum",
PCA.View.output=TRUE,
Geno.View.output=TRUE,
plot.style="Oceanic",
SUPER_GD=NULL,
SUPER_GS=FALSE,
h2=NULL,
NQTN=NULL,
QTNDist="normal",
effectunit=1,
category=1,
r=0.25,
cveff=NULL,
a2=0,
adim=2,
Multiple_analysis=FALSE,
model="MLM",
Para=NULL
){
#Object: To perform GWAS and GPS (Genomic Prediction/Selection)
#Designed by Zhiwu Zhang
#Writen by Jiabo Wang
#Last update: Novenber 3, 2016
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.