Description Usage Arguments Details Value See Also Examples
These functions are all methods
for class glmb
or summary.glmb
objects.
1 2 3 4 5 |
object |
an object of class |
x |
an object of class |
digits |
the number of significant digits to use when printing. |
... |
Additional optional arguments |
The summary.glmb
function summarizes the output from the glmb
function.
Key output includes mean residuals, information related to the prior, mean coefficients
with associated stats, percentiles for the coefficients, as well as the effective number of
parameters and the DIC statistic.
summary.glmb
returns a object of class "summary.glmb"
, a
list with components:
call |
the component from |
n |
number of draws generated |
residuals |
vector of mean deviance residuals |
coefficients1 |
Matrix with the prior mean and maximum likelihood coefficients with associated standard deviations |
coefficients |
Matrix with columns for the posterior mode, posterior mean, posterior standard deviation, monte carlo error, and tail probabilities (posterior probability of observing a value for the coefficient as extreme as the prior mean) |
Percentiles |
Matrix with estimated percentiles associated with the posterior density |
pD |
Estimated effective number of parameters |
deviance |
Vector with draws for the deviance |
DIC |
Estimated DIC statistic |
iters |
Average number of candidates per generated draws |
lmb
, glmb
, summary
, [stats]summary.lm
,[stats]summary.glm
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ########################### Example for glmb function:
## Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
mysd<-1
mu<-matrix(0,5)
mu[1,1]=log(mean(counts))
V0<-((mysd)^2)*diag(5)
glmb.D93<-glmb(counts ~ outcome + treatment, family = poisson(),
pfamily=dNormal(mu=mu,Sigma=V0))
summary(glmb.D93)
########################### Example for lmb function
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
ps=Prior_Setup(weight ~ group)
mu=ps$mu
V=ps$Sigma
mu[1,1]=mean(weight)
Prior_Check(weight ~ group,family =gaussian(),
pfamily=dNormal(mu=mu,Sigma=V))
## May move this step inside the Prior_Check function
lm.D9 <- lm(weight ~ group,x=TRUE,y=TRUE)
disp_ML=sigma(lm.D9)^2
n_prior=2
shape=n_prior/2
rate= disp_ML*shape
lmb.D9=lmb(weight ~ group,dNormal_Gamma(mu,V/disp_ML,shape=shape,rate=rate))
summary(lmb.D9)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.