generate_mpredcc: Generate data from Mean and Predictor Covariance-Connected...

Description Usage Arguments Value

View source: R/generate.R

Description

Generate data from Mean and Predictor Covariance-Connected (MPREDCC) regression model; iid or autoregressive structures supported.

Usage

1
2
3
generate_mpredcc(n = 100, alpha, Psi, ssy = 1, ssx = 1, mu_Y = 0,
  mu_X = rep(0, ncol(Psi)), a = NULL, A = NULL, Y_start = NULL,
  X_start = NULL)

Arguments

n

The number of observations to generate.

alpha

The p-vector of coefficients such that beta = Psi x alpha.

Psi

A p x p SPSD matrix of rank k giving the predictor covariance structure.

ssy

Noise variance for response

ssx

Noise variance for predictors

mu_Y

Mean parameter for responses

mu_X

Mean parameter for predictors

a

Vector of autoregressive parameters for the response, first element is first lag

A

Matrix of autoregressive parameters for the predictors, first p rows is for the first lag

Y_start

Starting values if autoregressive responses; default to zeros

X_start

Starting values if autoregressive predictors; default to zeros

Value

List with responses (Y) and predictors (X)


koekvall/mpredcc documentation built on Nov. 4, 2019, 3:54 p.m.