Description Usage Arguments Value
Generate data from Mean and Predictor Covariance-Connected (MPREDCC) regression model; iid or autoregressive structures supported.
1 2 3 |
n |
The number of observations to generate. |
alpha |
The p-vector of coefficients such that beta = Psi x alpha. |
Psi |
A p x p SPSD matrix of rank k giving the predictor covariance structure. |
ssy |
Noise variance for response |
ssx |
Noise variance for predictors |
mu_Y |
Mean parameter for responses |
mu_X |
Mean parameter for predictors |
a |
Vector of autoregressive parameters for the response, first element is first lag |
A |
Matrix of autoregressive parameters for the predictors, first p rows is for the first lag |
Y_start |
Starting values if autoregressive responses; default to zeros |
X_start |
Starting values if autoregressive predictors; default to zeros |
List with responses (Y) and predictors (X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.