Description Usage Arguments Value
Fit Mean and Predictor Covariance-Connected (MPREDCC) regression model
1 2 3 4 5 | mpredcc(Y, X, Z = NULL, H = NULL, k = 1, mu = 1e-06, tol = 1e-06,
maxit = 1000, quiet = TRUE, relative = TRUE, maxit_upd = c(50,
50), quiet_upd = c(TRUE, TRUE), tol_upd = c(1e-06, 1e-06),
accelerate = TRUE, restart = TRUE, step_size = NULL, Psi = NULL,
alpha = NULL, ssx = NULL, ssy = NULL, theta = NULL, phi = NULL)
|
Y |
An n-vector of responses |
X |
An n x p matrix of predictors. |
Z |
Optional n x p_y design matrix for responses |
H |
Optional np x p_x design matrix for predictors |
k |
The dimension of the dimension reduction subspace |
mu |
Ridge penalty coefficient for regression coefficient |
tol |
Tolerance for termianting the algorithm |
maxit |
Maximum number of iterations in coordinate descent |
quiet |
If false, print progress after every coordinate update |
relative |
If true, use relative change to determine convergence |
maxit_upd |
Maximum iterations for Psi and ssx updates (length = 2) |
quiet_upd |
If false, print progress within Psi and ssx updates (length = 2) |
tol_upd |
Tolerance for Psi and ssx updates (length = 2) |
accelerate |
If true, will use acceleration in Psi update, see apg::apg |
restart |
If true, use adaptive restart in Psi update, see apg::apg |
step_size |
Initial step_size for Psi update, see apg::apg |
Psi |
Starting value for Psi (ignored if is.null(ssx)) |
alpha |
Starting value for alpha |
ssx |
Starting value for ssx (ignored if is.null(Psi)) |
ssy |
Starting value for ssy |
theta |
Starting value for theta (ignored if is.null(Z)) |
phi |
starting value for phi (ignored if is.null(H)) |
List with final iterates and number of iterations
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.