mpredcc: Fit Mean and Predictor Covariance-Connected (MPREDCC)...

Description Usage Arguments Value

Description

Fit Mean and Predictor Covariance-Connected (MPREDCC) regression model

Usage

1
2
3
4
5
mpredcc(Y, X, Z = NULL, H = NULL, k = 1, mu = 1e-06, tol = 1e-06,
  maxit = 1000, quiet = TRUE, relative = TRUE, maxit_upd = c(50,
  50), quiet_upd = c(TRUE, TRUE), tol_upd = c(1e-06, 1e-06),
  accelerate = TRUE, restart = TRUE, step_size = NULL, Psi = NULL,
  alpha = NULL, ssx = NULL, ssy = NULL, theta = NULL, phi = NULL)

Arguments

Y

An n-vector of responses

X

An n x p matrix of predictors.

Z

Optional n x p_y design matrix for responses

H

Optional np x p_x design matrix for predictors

k

The dimension of the dimension reduction subspace

mu

Ridge penalty coefficient for regression coefficient

tol

Tolerance for termianting the algorithm

maxit

Maximum number of iterations in coordinate descent

quiet

If false, print progress after every coordinate update

relative

If true, use relative change to determine convergence

maxit_upd

Maximum iterations for Psi and ssx updates (length = 2)

quiet_upd

If false, print progress within Psi and ssx updates (length = 2)

tol_upd

Tolerance for Psi and ssx updates (length = 2)

accelerate

If true, will use acceleration in Psi update, see apg::apg

restart

If true, use adaptive restart in Psi update, see apg::apg

step_size

Initial step_size for Psi update, see apg::apg

Psi

Starting value for Psi (ignored if is.null(ssx))

alpha

Starting value for alpha

ssx

Starting value for ssx (ignored if is.null(Psi))

ssy

Starting value for ssy

theta

Starting value for theta (ignored if is.null(Z))

phi

starting value for phi (ignored if is.null(H))

Value

List with final iterates and number of iterations


koekvall/mpredcc documentation built on Nov. 4, 2019, 3:54 p.m.