| Lhat_fun_RD | R Documentation |
Calculates Lhat_j(δ) in the paper
Lhat_fun_RD( delta, Cj, Cbar, Xt, Xc, mon_ind, sigma_t, sigma_c, Yt, Yc, ht, hc, ret.w = FALSE )
delta |
a nonegative scalar value:
it can be left unspecified if |
Cj |
the smoothness parameter aiming to adapt to. |
Cbar |
the largest smoothness parameter. |
Xt |
n_t by k design matrix for the treated units. |
Xc |
n_c by k design matrix for the control units. |
mon_ind |
index number for monotone variables. |
sigma_t |
standard deviation of the error term for the treated units (either length 1 or n_t). |
sigma_c |
standard deviation of the error term for the control units (either length 1 or n_c). |
Yt |
outcome value for the treated group observations. |
Yc |
outcome value for the control group observations. |
ht |
the modulus value for the treated observations;
it can be left unspecified if |
hc |
the modulus value for the control observations;
it can be left unspecified if |
ret.w |
returns weights vector if |
a scalar value of the estimator
n <- 500 d <- 2 X <- matrix(rnorm(n * d), nrow = n, ncol = d) tind <- X[, 1] < 0 & X[, 2] < 0 Xt <- X[tind == 1, ,drop = FALSE] Xc <- X[tind == 0, ,drop = FALSE] mon_ind <- c(1, 2) sigma <- rnorm(n)^2 + 1 sigma_t <- sigma[tind == 1] sigma_c <- sigma[tind == 0] Yt = 1 + rnorm(length(sigma_t), mean = 0, sd = sigma_t) Yc = rnorm(length(sigma_c), mean = 0, sd = sigma_c) Lhat_fun_RD (1, 1/2, 1, Xt, Xc, mon_ind, sigma_t, sigma_c, Yt, Yc) Lhat_fun_RD (1, 1/2, Inf, Xt, Xc, mon_ind, sigma_t, sigma_c, Yt, Yc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.