cov_calc | R Documentation |
Calculates the covariance between two estimators, Lhat_j(δ) and Lhat_k(δ).
cov_calc( delta, Cj, Ck, Cbar, Xt, Xc, mon_ind, sigma_t, sigma_c, ht_j, hc_j, ht_k, hc_k )
delta |
a nonegative scalar value;
it can be left unspecified if
( |
Cj |
the smoothness parameter corresponding to the first estimator. |
Ck |
the smoothness parameter corresponding to the second estimator. |
Cbar |
the largest smoothness parameter. |
Xt |
n_t by k design matrix for the treated units. |
Xc |
n_c by k design matrix for the control units. |
mon_ind |
index number for monotone variables. |
sigma_t |
standard deviation of the error term for the treated units (either length 1 or n_t). |
sigma_c |
standard deviation of the error term for the control units (either length 1 or n_c). |
ht_j |
the modulus value for the treated observations,
corresponding to the first smoothness parameter;
it can be left unspecified if |
hc_j |
the modulus value for the contorl observations,
corresponding to the first smoothness parameter;
it can be left unspecified if |
ht_k |
the modulus value for the treated observations,
corresponding to the second smoothness parameter;
it can be left unspecified if |
hc_k |
the modulus value for the control observations,
corresponding to the second smoothness parameter;
it can be left unspecified if |
This corresponds to the expressions (17) and (18) of our paper.
a scalar covariance value.
n <- 500 d <- 2 X <- matrix(rnorm(n * d), nrow = n, ncol = d) tind <- X[, 1] < 0 & X[, 2] < 0 Xt <- X[tind == 1, ,drop = FALSE] Xc <- X[tind == 0, ,drop = FALSE] mon_ind <- c(1, 2) sigma <- rnorm(n)^2 + 1 sigma_t <- sigma[tind == 1] sigma_c <- sigma[tind == 0] cov_calc(1, 0.2, 0.4, 1, Xt, Xc, mon_ind, sigma_t, sigma_c) cov_calc(1, 0.2, 0.4, Inf, Xt, Xc, mon_ind, sigma_t, sigma_c)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.