Description Usage Arguments Value References Examples
View source: R/generateNetwork.R
Network inference with Gaussian graphical models (GGMs) or Pearson correlation
1 2 3 | generateNetwork(data, covars = NULL, annotations,
correlation.type = "partial", alpha = 0.05,
correction.method = "bonferroni")
|
data |
a |
covars |
a |
annotations |
a |
correlation.type |
type of correlation to be estimated. Can either be "pearson", or "partial". |
alpha |
significance level (type 1 error) for multiple testing correction. |
correction.method |
the method that should be used for multiple testing correction ("bonferroni", "BH", "BY", "fdr", "holm", "hochberg", "hommel", "none").
Default is bonferroni. See |
a network containing the variables as nodes as an igraph
object.
Krumsiek2011MoDentify
1 2 3 4 5 6 7 | data(qmdiab.data)
data(qmdiab.annos)
net.graph <- generateNetwork(
data = qmdiab.data, annotations = qmdiab.annos,
alpha = 0.05, correction.method = "bonferroni"
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.