# This example shows what possible objects can be passed into xspline function
library(randomForest)
library(pdp)
data(boston)
set.seed(101)
boston.rf <- randomForest(cmedv ~ lstat + ptratio + age, data = boston)
# xspliner specific formula
model <- xspline(
cmedv ~
xs(lstat, transition = list(k = 6), effect = list(type = "pdp", grid.resolution = 60)) +
xs(ptratio, transition = list(k = 4), effect = list(type = "pdp", grid.resolution = 40)) +
age,
model = boston.rf,
data = boston
)
summary(model)
# when xs has no parameters default ones are taken
model <- xspline(
cmedv ~
xs(lstat) +
xs(ptratio, transition = list(k = 4), effect = list(type = "pdp", grid.resolution = 40)) +
age,
model = boston.rf,
data = boston
)
summary(model)
# xspliner specific formula (can used just some predictors from the model one)
model <- xspline(
cmedv ~ lstat + age,
model = boston.rf,
data = boston,
consider = "all"
)
summary(model)
# we can consider whereter to use linear or xs transformation automatically
model <- xspline(
cmedv ~ lstat + ptratio + age,
model = boston.rf,
data = boston,
consider = "all",
xs_opts = list(transition = list(alter = "auto"))
)
summary(model)
# 'response ~ .' formula based on data
model <- xspline(
cmedv ~ .,
model = boston.rf
)
summary(model)
model <- xspline(
cmedv ~ .,
model = boston.rf,
xs_opts = list(
effect = list(type = "pdp", grid.resolution = 40),
transition = list(k = 4, alter = "auto"))
)
summary(model)
model <- xspline(
cmedv ~ .,
model = boston.rf,
xs_opts = list(
effect = list(type = "pdp"),
transition = list(alter = "auto"))
)
summary(model)
# predictive model
model <- xspline(
boston.rf
)
summary(model)
# explainer object
explainer <- DALEX::explain(boston.rf, label = "boston")
model <- xspline(
explainer
)
summary(model)
# factor predictor
set.seed(101)
boston.rf <- randomForest(cmedv ~ lstat + ptratio + chas + age, data = boston)
model <- xspline(
cmedv ~
xs(lstat, transition = list(k = 6), effect = list(type = "pdp", grid.resolution = 60)) +
xs(ptratio, transition = list(k = 4), effect = list(type = "pdp", grid.resolution = 40)) +
xf(chas) +
age,
model = boston.rf,
data = boston,
xf_opts = list(transition = list(alter = "always"))
)
summary(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.