knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(DT)
The following tutorials is based on a single condition experiment data.
library(NetPhorce) paste0("NetPhorce Version: ", packageVersion("NetPhorce"))
## Loading One Condition Data data("oneConditionExample", package = "NetPhorce") DT::datatable(oneConditionExample, rownames = FALSE, options = list( pageLength = 5, scrollX = TRUE, rownames = FALSE, autoWidth = TRUE, columnDefs = list(list(targets=c(7), width = "700px"), list(className = 'dt.center', targets = "_all")) ))
## Identify the Key Columns identifiedCols <- confirmColumnNames(rawMaxQuant = oneConditionExample, positionCol = "Position", reverseCol = "Reverse", localizationProbCol = "Localization prob", potentialContaminationCol = "Potential contaminant", aminoAcidCol = "Amino acid", uniqueIDCol = "Protein", seqWindowIDCol = "Sequence window", fastaIDCol = "Fasta headers")
## Identify the Intensity Columns with Condition, Time Point and Replication Information intensityCols <- confirmIntensityColumns(rawMaxQuant = oneConditionExample, intensityPattern = "con_time_rep", verbose = TRUE)
## Process the data based on the identified columns netPhorceData <- processData(rawMaxQuant = oneConditionExample, processedColNames = identifiedCols, processedIntensity = intensityCols, minReplication = 3, minLocalProb = 0.75)
## Validating the Kinase/Phosphatase Information netPhorceData <- validateKinaseTable(netPhorceData = netPhorceData, defaultKinaseTable = TRUE, abbrev = "Ath")
## Regulation Validation based on user inputs netPhorceData <- regulationCheck(netPhorceData = netPhorceData, upReg = 0.25, downReg = 0.25, absMinThreshold = 0.1, qValueCutOff = 0.05, verbose = TRUE)
## Network Analysis netPhorceData <- networkAnalysis(netPhorceData = netPhorceData, requestPlotData = TRUE)
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.