knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(NetPhorce)
library(NetPhorce)
## Loading One Condition Data data("twoConditionsExample", package = "NetPhorce") ## ## Identify the Key Columns identifiedCols <- confirmColumnNames(rawMaxQuant = twoConditionsExample, positionCol = "Position", reverseCol = "Reverse", localizationProbCol = "Localization prob", potentialContaminationCol = "Potential contaminant", aminoAcidCol = "Amino acid", uniqueIDCol = "Protein", seqWindowIDCol = "Sequence window", fastaIDCol = "Fasta headers") ## Identify the Intensity Columns with Condition, Time Point and Replication Information intensityCols <- confirmIntensityColumns(rawMaxQuant = twoConditionsExample, intensityPattern = "con_time_rep", verbose = TRUE) ## Process the data based on the identified columns netPhorceData <- processData(rawMaxQuant = twoConditionsExample, processedColNames = identifiedCols, processedIntensity = intensityCols, minReplication = 3, minLocalProb = 0.75) ## Validating the Kinase/Phosphatase Information netPhorceData <- validateKinaseTable(netPhorceData = netPhorceData, defaultKinaseTable = TRUE, abbrev = "Ath") ## Regulation Validation based on user inputs netPhorceData <- regulationCheck(netPhorceData = netPhorceData, upReg = 0.25, downReg = 0.25, absMinThreshold = 0.1, qValueCutOff = 0.05, verbose = TRUE) ## Network Analysis netPhorceData <- networkAnalysis(netPhorceData = netPhorceData, requestPlotData = TRUE)
plotDistribution(netPhorceData = netPhorceData, condition = "Col0", plotly = FALSE)
plotDistribution(netPhorceData = netPhorceData, condition = "Col0", plotly = TRUE)
plotHistBox(netPhorceData = netPhorceData, condition = "tot3", histogram = TRUE, boxplot = TRUE)
plotHistBox(netPhorceData = netPhorceData, condition = "tot3", histogram = FALSE, boxplot = TRUE)
plotHistBox(netPhorceData = netPhorceData, condition = "tot3", histogram = TRUE, boxplot = FALSE)
plotPCA(netPhorceData = netPhorceData, condition = "Col0", normalized = FALSE, plotly = FALSE)
plotPCA(netPhorceData = netPhorceData, condition = "tot3", normalized = TRUE, plotly = TRUE)
uniqueIDs <- findUniqueIDs(netPhorceData = netPhorceData, uniqueIDList = c( # Significant Set Examples: "AT1G13030.1", "AT1G13360.3", "AT1G42550.1", # Unique/Abscence Set Examples "AT1G17280.9", "AT1G22310.2", "AT1G23890.2" ), verbose = TRUE)
plotUniqueIDsHeatmaps(netPhorceData = netPhorceData, foundUniqueIDs = uniqueIDs, heatmapType = "Significant", minQVal = 0.05, plotly = TRUE)
plotUniqueIDsHeatmaps(netPhorceData = netPhorceData, foundUniqueIDs = uniqueIDs, heatmapType = "AbsencePresence", plotly = FALSE)
clusterIDs_Sig <- findClusters(netPhorceData = netPhorceData, clusterIDs = c(0), heatmapType = "Significant", minQVal = 0.1, verbose = TRUE)
Note, you do not need to supply minQVal for Abscence Presence Heatmap
clusterIDs_AbsPrs <- findClusters(netPhorceData = netPhorceData, clusterIDs = c(1), minQVal = 0.1, heatmapType = "AbsencePresence", verbose = TRUE)
plotClustersHeatmap(netPhorceData = netPhorceData, foundClusterIDs = clusterIDs_Sig, plotly = TRUE)
plotClustersHeatmap(netPhorceData = netPhorceData, foundClusterIDs = clusterIDs_AbsPrs, plotly = FALSE)
peptideIDs <- findPeptideIDs(netPhorceData = netPhorceData, peptideIDList = c("AT1G01320.2_S1349_1", "AT1G05560.1_S153_1", "AT1G01320.2_S149_1"))
plotSinglePeptide(netPhorceData = netPhorceData, foundPepetidesIDs = peptideIDs, plotAll = FALSE, plotly = TRUE)
plotSinglePeptide(netPhorceData = netPhorceData, foundPepetidesIDs = peptideIDs, plotAll = FALSE, plotly = FALSE)
plotMultiPeptides(netPhorceData = netPhorceData, foundPepetidesIDs = peptideIDs, condition = "Col0", plotly = TRUE)
plotMultiPeptides(netPhorceData = netPhorceData, foundPepetidesIDs = peptideIDs, condition = "tot3", plotly = FALSE)
plotRegulation(netPhorceData = netPhorceData , condition = "Col0", plotly = TRUE)
plotRegulation(netPhorceData = netPhorceData , condition = "tot3", plotly = FALSE)
plotNetPhorce(netPhorceData = netPhorceData, condition = "tot3", FASTADescription = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.