knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(NetPhorce) # library(DT) # library(devtools) # load_all()
## Loading One Condition Data data("twoConditionsExample", package = "NetPhorce") ## ## Identify the Key Columns identifiedCols <- confirmColumnNames(rawMaxQuant = twoConditionsExample, positionCol = "Position", reverseCol = "Reverse", localizationProbCol = "Localization prob", potentialContaminationCol = "Potential contaminant", aminoAcidCol = "Amino acid", uniqueIDCol = "Protein", seqWindowIDCol = "Sequence window", fastaIDCol = "Fasta headers") ## Identify the Intensity Columns with Condition, Time Point and Replication Information intensityCols <- confirmIntensityColumns(rawMaxQuant = twoConditionsExample, intensityPattern = "con_time_rep", verbose = TRUE) ## Process the data based on the identified columns netPhorceData <- processData(rawMaxQuant = twoConditionsExample, processedColNames = identifiedCols, processedIntensity = intensityCols, minReplication = 3, minLocalProb = 0.75) ## Validating the Kinase/Phosphatase Information netPhorceData <- validateKinaseTable(netPhorceData = netPhorceData, defaultKinaseTable = TRUE, abbrev = "Ath") ## Regulation Validation based on user inputs netPhorceData <- regulationCheck(netPhorceData = netPhorceData, upReg = 0.25, downReg = 0.25, absMinThreshold = 0.1, qValueCutOff = 0.05, verbose = TRUE) ## Network Analysis netPhorceData <- networkAnalysis(netPhorceData = netPhorceData, requestPlotData = TRUE)
summaryTable <- extractSummaryTable(netPhorceData = netPhorceData) DT::datatable(summaryTable, options = list( pageLength = 15, scrollX = TRUE, rownames = FALSE))
networkResults <- extractNetworkResults(netPhorceData = netPhorceData) DT::datatable(networkResults, options = list( pageLength = 15, scrollX = TRUE, rownames = FALSE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.