lehner.soybeanmold: Yield, white mold, and sclerotia for soybeans in Brazil

lehner.soybeanmoldR Documentation

Yield, white mold, and sclerotia for soybeans in Brazil

Description

Yield, white mold, and sclerotia for soybeans in Brazil

Usage

data("lehner.soybeanmold")

Format

A data frame with 382 observations on the following 9 variables.

study

study number

year

year of harvest

loc

location name

elev

elevation

region

region

trt

treatment number

yield

crop yield, kg/ha

mold

white mold incidence, percent

sclerotia

weight of sclerotia g/ha

Details

Data are the mean of 4 reps.

Original source (Portuguese) https://ainfo.cnptia.embrapa.br/digital/bitstream/item/101371/1/Ensaios-cooperativos-de-controle-quimico-de-mofo-branco-na-cultura-da-soja-safras-2009-a-2012.pdf

Data included here via GPL3 license.

Source

Lehner, M. S., Pethybridge, S. J., Meyer, M. C., & Del Ponte, E. M. (2016). Meta-analytic modelling of the incidence-yield and incidence-sclerotial production relationships in soybean white mould epidemics. Plant Pathology. doi:10.1111/ppa.12590

References

Full commented code and analysis https://emdelponte.github.io/paper-white-mold-meta-analysis/

Examples

## Not run: 

library(agridat)
data(lehner.soybeanmold)
dat <- lehner.soybeanmold

if(0){
  op <- par(mfrow=c(2,2))
  hist(dat$mold, main="White mold incidence")
  hist(dat$yield, main="Yield")
  hist(dat$sclerotia, main="Sclerotia weight")
  par(op)
}

libs(lattice)
xyplot(yield ~ mold|study, dat, type=c('p','r'),
       main="lehner.soybeanmold")
# xyplot(sclerotia ~ mold|study, dat, type=c('p','r'))

# meta-analysis. Could use metafor package to construct the forest plot,
# but latticeExtra is easy; ggplot is slow/clumsy
libs(latticeExtra, metafor)
# calculate correlation & confidence for each loc
cors <- split(dat, dat$study)
cors <- sapply(cors,
               FUN=function(X){
                 res <- cor.test(X$yield, X$mold)
                 c(res$estimate, res$parameter[1],
                   conf.low=res$conf.int[1], conf.high=res$conf.int[2])
               })
cors <- as.data.frame(t(as.matrix(cors)))
cors$study <- rownames(cors)
# Fisher Z transform
cors <- transform(cors, ri = cor)
cors <- transform(cors, ni = df + 2)
cors <- transform(cors,
                  yi = 1/2 * log((1 + ri)/(1 - ri)),
                  vi = 1/(ni - 3))
# Overall correlation across studies
overall <- rma.uni(yi, vi, method="ML", data=cors) # metafor package
# back transform
overall <- predict(overall, transf=transf.ztor)

# weight and size for forest plot
wi    <- 1/sqrt(cors$vi)
size  <- 0.5 + 3.0 * (wi - min(wi))/(max(wi) - min(wi))

# now the forest plot
# must use latticeExtra::layer in case ggplot2 is also loaded
segplot(factor(study) ~ conf.low+conf.high, data=cors,
        draw.bands=FALSE, level=size, centers=ri, cex=size,
        col.regions=colorRampPalette(c("gray85", "dodgerblue4")),
        main="White mold vs. soybean yield",
        xlab=paste("Study correlation, confidence, and study weight (blues)\n",
                   "Overall (black)"),
        ylab="Study ID") +
  latticeExtra::layer(panel.abline(v=overall$pred, lwd=2)) +
  latticeExtra::layer(panel.abline(v=c(overall$cr.lb, overall$cr.ub), lty=2, col="gray"))


# Meta-analyses are typically used when the original data is not available.
# Since the original data is available, a mixed model is probably better.
libs(lme4)
m1 <- lmer(yield ~ mold # overall slope
           + (1+mold |study), # random intercept & slope per study
           data=dat)
summary(m1)


## End(Not run)

kwstat/agridat documentation built on Nov. 2, 2024, 6:19 a.m.