kfold_ksmm: Parameter Tuning of Functions Using Grid Search

Description Usage Arguments Details Author(s) References See Also Examples

View source: R/ksmm.R

Description

This generic function tunes hyperparameters of statistical methods using a grid search over supplied parameter ranges for ksmm.

Usage

1
	kfold_ksmm(x, y, x_dim, cost_range, sigma_range, kernel, nFold = 5, nCores = 1, ...) 

Arguments

x

a input data matrix

y

a response vector with one label for each row/component of X. It must be 1 or -1

x_dim

the size of input matrix X

cost_range

input data matrix to test

sigma_range

input data matrix to test

kernel

the kernel used in training and predicting

nFold

the number of partitions for cross-valication

nCores

the number of cores to use for parallel computing

Details

This function is used to tune the parameters of ksmm. Detailed theory is included in the KSMM paper.

Author(s)

Kyuri Park

References

Ye, Y. (2019). A nonlinear kernel support matrix machine. International Journal of Machine Learning and Cybernetics.

See Also

ksmm

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
require(ksmm)
data(nottingham)

X = as.matrix(nottingham[,-1])
y = ifelse(nottingham[,1] == 1, 1, -1)
cost_seq = 2^{-1:1}
sigma_seq = 10^{-1:1}
train_x = X[c(1,2,99,100),]
train_y = y[c(1,2,99,100)]

kfold_fit = kfold_ksmm(x= train_x, y = train_y, x_dim = c(200, 200), cost_range = cost_seq, 
sigma_range = sigma_seq, kernel='rbf', nCores = 1, maxit = 1e+3, epsilon = 5e-2, nFold = 1)
opt_cost = kfold_fit$opt_params[1]
opt_sigma = kfold_fit$opt_params[2]
    	

kyuridata/ksmm documentation built on Dec. 21, 2021, 8:47 a.m.