#basically i) coerce from FLstock to FLSAM, ii) compute FLBRP, iii) calc status relative to refpts iv) plot ROC curve to estimate classification skill and bias
setMethod("crosstest", signature(object="FLStock"),
function(object=object,...){
res=crosstestFn(object)
res})
if (FALSE){
## Mackerel ####################################################################
load("/home/laurie/Desktop/inPrep/pew/github/erp/data/om/om.RData")
load("/home/laurie/Desktop/inPrep/pew/github/erp/data/inputs/ices/mac.RData")
## FLife #######################################################################
par=FLPar(c(linf=8.0,
k =0.7,
t0 =-0.1,
s =0.7,
v =1000,
l50 =3.5))
par=lhPar(par)
eq=lhEql(par,m=function(...) 0.2)
fbar =FLQuant(c(rep(1,20),seq(1,2,length.out=10),seq(2,0.8,length.out=11)[-1]))
eq@fbar=fbar%*%refpts(eq)["msy","harvest"]
om=as(eq,"FLStock")
om=qapply(om, function(x){ dimnames(x)$year=seq(1981,2020); x})
om=fwd(om,fbar=fbar(om)[,-1],sr=eq)
om=propagate(om,100)
om=fwd(om,fbar=fbar(om)[,-1],
sr =eq,residuals=rlnorm(100,fbar(om)*0,0.3))
mp=om
m(mp)[]=0.2
control=as(FLQuants("catch"=catch[om][,"2022"],"f"=fbar[om][,"2023"]),"fwdControl")
crosstestFn<-function(om,
eq =FLBRP(om,params=FLPar(mean(rec(om))),model=geomean()$model),
control="missing",indices="missing"){
retrun(mp)}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.