What are the benefits of reducing uncertainty?
Methods Simulate a range of stock dynamics
knitr::opts_chunk$set(echo = FALSE) library(knitr) opts_chunk$set(comment =NA, warning =FALSE, message =FALSE, error =FALSE, echo =FALSE, fig.width =10, fig.height=10, cache =TRUE, fig.path ="tex/proxies-", cache.path="cache/proxies/") iFig=0 iTab=0
library(FLCore) library(FLBRP) library(FLasher) library(FLife) library(mydas) library(popbio) library(ggplotFL) library(scales) library(plyr) library(dplyr) library(reshape) library(grid) library(reshape) library(popbio) library(magrittr) library(broom) library(GGally)
library(doParallel) library(foreach) cl=makeCluster(3) registerDoParallel(cl)
par=lhPar(FLPar(c(linf= 59.1, k=0.28, t0=-0.4, s=0.9, a=0.01111,b=3.15,a50=4.0, l50=43.25),units="NA")) par=propagate(par,16) dat=expand.grid(bg=c(3,3.1),sel3=c(5000,5),s=c(0.75,0.9),k=0.28*c(1,0.5)) par["bg"] =dat$bg par["sel3"]=dat$sel3 par["s" ] =dat$s par["k" ] =dat$k
smry=popdyn(par)
ggpairs(model.frame(smry[c("msy","fmsy","bmsy","r","rc")][,-6]), #mapping = ggplot2::aes(color=as.character(sel3)), lower = list(continuous = wrap(mydas:::my_smooth)), diag=list(continuous=wrap(mydas:::my_density,alpha=0.2)), title = "")+ theme(legend.position ="none", panel.grid.major =element_blank(), axis.ticks =element_blank(), axis.text.x =element_blank(), axis.text.y =element_blank(), panel.border =element_rect(linetype = 1, colour="black", fill=NA))+ theme_bw(16)
Figure r iFig=iFig+1; iFig
. Relationship between MSY reference points and population growth rate.
ggpairs(model.frame(smry[c("lopt","clmsy","slmsy","mk","fm","lfm","spr0","msy","fmsy","bmsy")])[,-11], lower = list(continuous = wrap(mydas:::my_smooth)), diag=list(continuous=wrap(mydas:::my_density,alpha=0.2)), title = "")+ theme(legend.position ="none", panel.grid.major =element_blank(), axis.ticks =element_blank(), axis.text.x =element_blank(), axis.text.y =element_blank(), panel.border =element_rect(linetype = 1, colour="black", fill=NA))+ theme_bw(16)
Figure r iFig=iFig+1; iFig
. Relationship between MSY reference points and their potential proxies.
idx=transform(merge(ind,refs[,c("slmsy","clmsy","lopt","lfm","iter")]), sln=sln/slmsy,cln=cln/clmsy, sl50=sln/l50,cl50=cln/l50, slopt=sln/lopt,clopt=cln/lopt, slfm =sln/lfm,clfm=cln/lfm, fmsy=fbar/msy_harvest)[,c("f","CV","AR","M","s","k","bg","sel3","fmsy", "sln","cln","sl50","cl50","slopt","clopt","slfm","clfm")] dat=melt(idx,id=c("f","CV","AR","M","s","k","bg","sel3","fmsy")) ggplot(dat)+ geom_boxplot(aes(ac(f),value))+ geom_hline(aes(yintercept=1),col="red")+ facet_wrap(~variable,ncol=2)+ xlab("F times FMSY")+ylab("Ratio with FMSY")
\newpage
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.