View source: R/posteriorMCMC.r
| posteriorMCMC | R Documentation | 
Generates a posterior parameters sample, and computes the posterior mean and component-wise variance on-line.
posteriorMCMC(
  prior = function(type = c("r", "d"), n, par, Hpar, log, dimData) {
     NULL
 },
  proposal = function(type = c("r", "d"), cur.par, prop.par, MCpar, log) {
     NULL
 },
  likelihood = function(x, par, log, vectorial) {
     NULL
 },
  Nsim,
  dat,
  Hpar,
  MCpar,
  Nbin = 0,
  par.start = NULL,
  show.progress = floor(seq(1, Nsim, length.out = 20)),
  seed = NULL,
  kind = "Mersenne-Twister",
  save = FALSE,
  class = NULL,
  name.save = NULL,
  save.directory = "~",
  name.dat = "",
  name.model = ""
)
prior | 
 The prior distribution: of type   | 
proposal | 
 The proposal function: of type   | 
likelihood | 
 The likelihood function.
Should be of type  | 
Nsim | 
 Total number of iterations to perform.  | 
dat | 
 An angular data set, e.g., constructed by
  | 
Hpar | 
 A list containing  Hyper-parameters to be passed to
  | 
MCpar | 
 A list containing  MCMC tuning parameters to be
passed to   | 
Nbin | 
 Length of the burn-in period.  | 
par.start | 
 Starting point for the MCMC sampler.  | 
show.progress | 
 An vector of integers containing the times (iteration numbers) at which a message showing progression will be printed on the standard output.  | 
seed | 
 The seed to be set via
  | 
kind | 
 The kind of random numbers generator. Default to
"Mersenne-Twister". See   | 
save | 
 Logical. Should the result be saved ?  | 
class | 
 Optional character string: additional class attribute to be assigned to the result. A predefined class   | 
name.save | 
 A character string giving the name under which
the result is to be saved. If   | 
save.directory | 
 A character string giving the directory where the result is to be saved (without trailing slash).  | 
name.dat | 
 A character string naming  the data set used for inference. Default to   | 
name.model | 
 A character string naming the model. Default to   | 
A list made of
stored.vals: A (Nsim-Nbin)*d matrix, where
d
is the dimension of the parameter space.
llh A vector of size (Nsim-Nbin) containing the loglikelihoods evaluated at each parameter of the posterior sample.
lprior A vector of size (Nsim-Nbin) containing the logarithm of the prior densities evaluated at each parameter of the posterior sample.
elapsed: The time elapsed, as given by
proc.time between the start and the end of the run.
Nsim: The same as the passed argument
Nbin: idem.
n.accept: The total number of accepted proposals.
n.accept.kept: The number of accepted proposals after the burn-in period.
emp.mean The estimated posterior parameters mean
emp.sd The empirical posterior sample  standard deviation.
posteriorMCMC.pb,
posteriorMCMC.pb for specific uses
in the PB and the NL models.
data(Leeds)
data(pb.Hpar)
data(pb.MCpar)
postsample1 <- posteriorMCMC(Nsim=1e+3,Nbin=500,
         dat= Leeds,
         prior = prior.pb,
         proposal = proposal.pb,
         likelihood = dpairbeta,
         Hpar=pb.Hpar,
         MCpar=pb.MCpar)
dim(postsample1[[1]])
postsample1[-1]
## Not run: 
## a more realistic one:
postsample2 <- posteriorMCMC(Nsim=50e+3,Nbin=15e+3,
         dat= Leeds,
         prior = prior.pb,
         proposal = proposal.pb,
         likelihood = dpairbeta,
         Hpar=pb.Hpar,
         MCpar=pb.MCpar)
dim(postsample2[[1]])
postsample2[-1]
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.