prior.nl: Prior parameter distribution for the NL model

Description Usage Arguments Details Value Author(s) Examples

Description

Density and generating function of the prior distribution.

Usage

1
prior.nl(type = c("r", "d"), n, par, Hpar, log, dimData = 3)

Arguments

type

One of the character strings "r", "d"

n

The number of parameters to be generated. Only used if type == "r".

par

A vector of length four, with component comprised between 0 and 1 (both end points excluded for the first element and 1 included for the others): The parameter where the density is to be taken. Only used if type=="d".

In the NL model, par is of length 4. The first element is the global dependence parameter, the others are partial dependence parameter between pairs (12), (13), (23) respectively.

In the NL model, par is of length 4. The first element has the same interpretation as in the NL model, the subsequent ones are dependence parameters between

Hpar

list of Hyper-parameters : see nl.Hpar for a template.

log

logical. Should the density be returned on the log scale ? Only used if type=="d"

dimData

The dimension of the sample space, equal to 3. Only for compatibility with e.g. posteriorMCMC.

Details

The four parameters are independent, the logit-transformed parameters follow a normal distribution.

Value

Either a matrix with n rows containing a random parameter sample generated under the prior (if type == "d"), or the (log)-density of the parameter par.

Author(s)

Anne Sabourin

Examples

1
2
3
4
## Not run: prior.nl(type="r", n=5 ,Hpar=get("nl.Hpar")) 

## Not run: prior.trinl(type="r", n=5 ,Hpar=get("nl.Hpar")) 
## Not run: prior.pb(type="d", par=rep(0.5,2), Hpar=get("nl.Hpar")) 

lbelzile/BMAmevt documentation built on June 13, 2019, 12:43 p.m.