lscale.lgm: Update for latent Gaussian model for the scale parameter of a...

View source: R/mcmc.R

lscale.lgmR Documentation

Update for latent Gaussian model for the scale parameter of a generalized Pareto

Description

The scale has a log-Gaussian prior with variance lscale.tausq and precision (the inverse of the correlation matrix) given by lscale.precis.

Usage

lscale.lgm(scale, shape, ldat, lscale.mu, lscale.precis, lscale.tausq,
  mmax, discount = 1, maxstep = Inf)

Arguments

scale

vector of scale parameters for the generalized Pareto distribution

shape

vector of shape parameters for the generalized Pareto distribution

ldat

list with exceedances at each site

lscale.mu

mean of the log-Gaussian process for the scale

lscale.precis

precision matrix of the log-Gaussian process corresponding to the inverse of the correlation matrix

lscale.tausq

variance of the log-Gaussian process

mmax

vector of maximum of each series in ldat

discount

numeric giving the discount factor for the Newton Default to 1.

maxstep

maximum step size for the MCMC (proposal will be at most maxstep units away from the current value).

Value

a vector of scale parameters


lbelzile/mgp documentation built on Aug. 5, 2023, 2:34 a.m.