shape.lgm: Update for latent Gaussian model for the shape parameter of a...

View source: R/mcmc.R

shape.lgmR Documentation

Update for latent Gaussian model for the shape parameter of a generalized Pareto

Description

The shape has aGaussian prior with variance shape.tausq and precision (the inverse of the correlation matrix) given by shape.precis.

Usage

shape.lgm(scale, shape, ldat, shape.mu = NULL, shape.precis = NULL,
  shape.tausq = NULL, mmax, lbound = -0.5, ubound = 0.5,
  discount = 1, maxstep = 0.1)

Arguments

scale

vector of scale parameters for the generalized Pareto distribution

shape

vector of shape parameters for the generalized Pareto distribution

ldat

list with exceedances at each site

shape.mu

mean of the Gaussian process for the shape parameters

shape.precis

precision matrix of the Gaussian process corresponding to the inverse of the correlation matrix

shape.tausq

variance of the Gaussian process for the shape parameters

mmax

vector of maximum of each series in ldat

lbound

lower bound if parameter is truncated below

ubound

upper bound if parameter is truncated above

discount

numeric giving the discount factor for the Newton Default to 1.

maxstep

maximum step size for the MCMC (proposal will be at most maxstep units away from the current value).

Value

a vector of scale parameters


lbelzile/mgp documentation built on Aug. 5, 2023, 2:34 a.m.