PageRank_H | R Documentation |
Calculates the PageRank for an n-by-n Markov Matrix (Row Normalized Hyperlink Matrix).
PageRank_H(H, alpha = 0.85, epsilon = 1e-08, pr0, v)
H |
|
alpha |
scaling parameter in PageRank model. It must be |
epsilon |
convergence tolerance. Default = 1e-8. |
pr0 |
starting vector at iteration 0 (a row vector). Usually set to rep(1/n,n). |
v |
personalization vector. sum(v) = 1. |
This function uses the power method to calculate the PageRank of a row normalized hyperlink matrix [1].
Numeric vector with nodes' PageRank
[1] Langville AN, Meyer CD (2006). "Google's PageRank and Beyond: The Science of Search Engine Rankings." Princeton University Press, Princeton.
# Generate an arbitrary 100 by 100 adjacency matrix with zeros and ones # Remove loops A <- matrix(rbinom(100 * 100, 1, 0.2), ncol = 100, nrow = 100) diag(A) <- 0 # Calculate PageRank PageRank_H(Rnhm(A))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.