renderReport | R Documentation |
This function generates a HTML report with quality checks, genome location
exploration, and an interactive table with the results. Other output formats
are possible such as PDF but lose the interactivity. Users can easily append
to the report by providing a R Markdown file to customCode
, or can
customize the entire template by providing an R Markdown file to
template
.
renderReport(
regions,
project = "",
pvalueVars = c(`P-values` = "pval"),
densityVars = NULL,
significantVar = mcols(regions)$pval <= 0.05,
annotation = NULL,
nBestRegions = 500,
customCode = NULL,
outdir = "regionExploration",
output = "regionExploration",
browse = interactive(),
txdb = NULL,
device = "png",
densityTemplates = list(Pvalue = templatePvalueDensity, Common = templateDensity,
Manhattan = templateManhattan),
template = NULL,
theme = NULL,
digits = 2,
...
)
templatePvalueDensity
templateDensity
templateManhattan
templatePvalueHistogram
templateHistogram
regions |
The set of genomic regions of interest as a |
project |
The title of the project. |
pvalueVars |
The names of the variables with values between 0 and 1 to plot density values by chromosome and a table for commonly used cutoffs. Most commonly used to explore p-value distributions. If a named character vector is provided, the names are used in the plot titles. |
densityVars |
The names of variables to use for making density plots by chromosome. Commonly used to explore scores and other variables given by region. If a named character vector is provided, the names are used in the plot titles. |
significantVar |
A |
annotation |
The output from matchGenes used on
|
nBestRegions |
The number of regions to include in the interactive table. |
customCode |
An absolute path to a child R Markdown file with code to be evaluated before the reproducibility section. Its useful for users who want to customize the report by adding conclusions derived from the data and/or further quality checks and plots. |
outdir |
The name of output directory. |
output |
The name of output HTML file (without the html extension). |
browse |
If |
txdb |
Specify the transcription database to use for identifying the
closest genes via matchGenes. If |
device |
The graphical device used when knitting. See more at
http://yihui.name/knitr/options ( |
densityTemplates |
A list of length 3 with templates for the p-value
density plots (variables from |
template |
Template file to use for the report. If not provided, will use the default file found in regionExploration/regionExploration.Rmd within the package source. |
theme |
A ggplot2 theme to use for the plots made with ggplot2. |
digits |
The number of digits to round to in the interactive table of
the top |
... |
Arguments passed to other methods and/or advanced arguments. Advanced arguments:
|
An object of class character
of length 1.
An object of class character
of length 1.
An object of class character
of length 1.
An object of class character
of length 1.
An object of class character
of length 1.
Set output_format
to 'knitrBootstrap::bootstrap_document'
or
'pdf_document'
if you want a HTML report styled by knitrBootstrap or
a PDF report respectively. If using knitrBootstrap, we recommend the version
available only via GitHub at https://github.com/jimhester/knitrBootstrap
which has nicer features than the current version available via CRAN. You can
also set the output_format
to 'html_document'
for a HTML
report styled by rmarkdown. The default is set to
'BiocStyle::html_document'
.
If you modify the YAML front matter of template
, you can use other
values for output_format
.
The HTML report styled with knitrBootstrap can be smaller in size than the
'html_document'
report.
An HTML report with a basic exploration for the given set of genomic regions. See the example report at http://leekgroup.github.io/regionReport/reference/renderReport-example/regionExploration.html.
Leonardo Collado-Torres
## Load derfinder for an example set of regions
library("derfinder")
regions <- genomeRegions$regions
## Assign chr length
library("GenomicRanges")
seqlengths(regions) <- c("chr21" = 48129895)
## The output will be saved in the 'renderReport-example' directory
dir.create("renderReport-example", showWarnings = FALSE, recursive = TRUE)
## Generate the HTML report
report <- renderReport(regions, "Example run",
pvalueVars = c(
"Q-values" = "qvalues", "P-values" = "pvalues"
), densityVars = c(
"Area" = "area", "Mean coverage" = "meanCoverage"
),
significantVar = regions$qvalues <= 0.05, nBestRegions = 20,
outdir = "renderReport-example"
)
if (interactive()) {
## Browse the report
browseURL(report)
}
## See the example report at
## http://leekgroup.github.io/regionReport/reference/renderReport-example/regionExploration.html
## Check the default templates. For users interested in customizing these
## plots.
## For p-value variables:
cat(regionReport::templatePvalueDensity)
## For continous variables:
cat(regionReport::templateDensity)
## For Manhattan plots
cat(regionReport::templateManhattan)
##################################################
## bumphunter example mentioned in the vignette ##
##################################################
## Load bumphunter
library("bumphunter")
## Create data from the vignette
pos <- list(
pos1 = seq(1, 1000, 35),
pos2 = seq(2001, 3000, 35),
pos3 = seq(1, 1000, 50)
)
chr <- rep(paste0("chr", c(1, 1, 2)), times = sapply(pos, length))
pos <- unlist(pos, use.names = FALSE)
## Find clusters
cl <- clusterMaker(chr, pos, maxGap = 300)
## Build simulated bumps
Indexes <- split(seq_along(cl), cl)
beta1 <- rep(0, length(pos))
for (i in seq(along = Indexes)) {
ind <- Indexes[[i]]
x <- pos[ind]
z <- scale(x, median(x), max(x) / 12)
beta1[ind] <- i * (-1)^(i + 1) * pmax(1 - abs(z)^3, 0)^3 ## multiply by i to vary size
}
## Build data
beta0 <- 3 * sin(2 * pi * pos / 720)
X <- cbind(rep(1, 20), rep(c(0, 1), each = 10))
set.seed(23852577)
error <- matrix(rnorm(20 * length(beta1), 0, 1), ncol = 20)
y <- t(X[, 1]) %x% beta0 + t(X[, 2]) %x% beta1 + error
## Perform bumphunting
tab <- bumphunter(y, X, chr, pos, cl, cutoff = .5)
## Explore data
lapply(tab, head)
library("GenomicRanges")
## Build GRanges with sequence lengths
regions <- GRanges(
seqnames = tab$table$chr,
IRanges(start = tab$table$start, end = tab$table$end),
strand = "*", value = tab$table$value, area = tab$table$area,
cluster = tab$table$cluster, L = tab$table$L, clusterL = tab$table$clusterL
)
## Assign chr lengths
seqlengths(regions) <- seqlengths(
getChromInfoFromUCSC("hg19", as.Seqinfo = TRUE)
)[
names(seqlengths(regions))
]
## Explore the regions
regions
## Now create the report
report <- renderReport(regions, "Example bumphunter",
pvalueVars = NULL,
densityVars = c(
"Area" = "area", "Value" = "value",
"Cluster Length" = "clusterL"
), significantVar = NULL,
output = "bumphunter-example", outdir = "bumphunter-example",
device = "png"
)
## See the example report at
## http://leekgroup.github.io/regionReport/reference/bumphunter-example/bumphunter-example.html
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.