metric.stats2: Secondary metric statistics

View source: R/metric_stats2.R

metric.stats2R Documentation

Secondary metric statistics

Description

This function calculates secondary statistics (DE and z-score) on metric statistics for use with developing a multi-metric index.

Usage

metric.stats2(
  data_metval,
  data_metstat,
  col_metval_RefStatus = "RefStatus",
  col_metval_DataType = "DataType",
  col_metval_Subset = "INDEX_CLASS",
  col_metstat_RefStatus = "RefStatus",
  col_metstat_DataType = "DataType",
  col_metstat_Subset = "INDEX_CLASS",
  RefStatus_Ref = "Ref",
  RefStatus_Str = "Str",
  RefStatus_Oth = "Oth",
  DataType_Cal = "Cal",
  DataType_Ver = "Ver",
  Subset_Value = NULL
)

Arguments

data_metval

Data frame of metric values.

data_metstat

Data frame of metric statistics

col_metval_RefStatus

Column name for Reference Status. Default = "Ref_Status"

col_metval_DataType

Column name for Data Type – Validation vs. Calibration. Default = "Data_Type"

col_metval_Subset

Column name for INDEX_CLASS in data_metstats. Default = INDEX_CLASS

col_metstat_RefStatus

Column name for Reference Status. Default = "Ref_Status"

col_metstat_DataType

Column name for Data Type – Validation vs. Calibration. Default = "Data_Type"

col_metstat_Subset

Column name for INDEX_CLASS in data_metstats. Default = xx.

RefStatus_Ref

RefStatus value for Reference. Default = "Ref"

RefStatus_Str

RefStatus value for Stressed. Default = "Str"

RefStatus_Oth

RefStatus value for Other. Default = "Oth"

DataType_Cal

DataType value for Calibration. Default = "Cal"

DataType_Ver

DataType value for Verification. Default = "Ver"

Subset_Value

Subset value of INDEX_CLASS (site class). Default = NULL

Details

Secondary metrics statistics for the data are calculated.

Inputs are metric values and metric stats outputs.

Metric values is a wide format with columns for each metric. Assumes only a single Subset.

Metrics stats is a wide format with columns for each statistic with metrics in a single column. Assumes only a single Subset.

Required fields are RefStatus, DataType, and INDEX_CLASS. The user is allowed to enter their own values for these fields for each input file.

The two statistics calculated are z-score and discrimination efficiency (DE) for each metric within each DataType (cal / val).

Z-scores are calculated using the calibration (or development) data set for a given INDEX_CLASS (or Site Class).

* (mean Ref - mean Str) / sd Ref

DE is calculated without knowing the expected direction of response for each metric for a given INDEX_CLASS (or Site Class). DE is the percentage (0-100) of **stressed** samples that fall **below** the **25th** quantile (for decreaser metrics, e.g., total taxa) or **above** the **75th** quantile (for increaser metrics, e.g., HBI) of the **reference** samples.

A data frame of the metric.stats input is returned with new columns (z_score, DE25 and DE75). The z-score is added for each Ref_Status. DE25 and DE75 are only added where Ref_Status is labeled as Stressed.

Value

A data frame of the metric.stats input is returned with new columns (z_score, DE25 and DE75).

Examples

# data, benthos
df_bugs <- data_mmi_dev

# Munge Names
names(df_bugs)[names(df_bugs) %in% "BenSampID"] <- "SAMPLEID"
names(df_bugs)[names(df_bugs) %in% "TaxaID"] <- "TAXAID"
names(df_bugs)[names(df_bugs) %in% "Individuals"] <- "N_TAXA"
names(df_bugs)[names(df_bugs) %in% "Exclude"] <- "EXCLUDE"
names(df_bugs)[names(df_bugs) %in% "Class"] <- "INDEX_CLASS"
names(df_bugs)[names(df_bugs) %in% "Unique_ID"] <- "SITEID"

# Calc Metrics
cols_keep <- c("Ref_v1", "CalVal_Class4", "SITEID", "CollDate", "CollMeth")
# INDEX_NAME and INDEX_CLASS kept by default
df_metval <- metric.values(df_bugs, "bugs", fun.cols2keep = cols_keep)

# Calc Stats
col_metrics   <- names(df_metval)[9:ncol(df_metval)]
col_SampID    <- "SAMPLEID"
col_RefStatus <- "REF_V1"
RefStatus_Ref <- "Ref"
RefStatus_Str <- "Strs"
RefStatus_Oth <- "Other"
col_DataType  <- "CALVAL_CLASS4"
DataType_Cal  <- "cal"
DataType_Ver  <- "verif"
col_Subset    <- "INDEX_CLASS"
Subset_Value  <- "CENTRALHILLS"
df_stats <- metric.stats(df_metval
                         , col_metrics
                         , col_SampID
                         , col_RefStatus
                         , RefStatus_Ref
                         , RefStatus_Str
                         , RefStatus_Oth
                         , col_DataType
                         , DataType_Cal
                         , DataType_Ver
                         , col_Subset
                         , Subset_Value)

# Calc Stats2 (z-scores and DE)
data_metval <- df_metval
data_metstat <- df_stats
col_metval_RefStatus <- "REF_V1"
col_metval_DataType <- "CALVAL_CLASS4"
col_metval_Subset <- "INDEX_CLASS"
col_metstat_RefStatus <- "REF_V1"
col_metstat_DataType <- "CALVAL_CLASS4"
col_metstat_Subset <- "INDEX_CLASS"
RefStatus_Ref = "Ref"
RefStatus_Str = "Strs"
RefStatus_Oth = "Other"
DataType_Cal = "cal"
DataType_Ver = "verif"
Subset_Value = "CENTRALHILLS"
df_stats2 <- metric.stats2(data_metval
                           , data_metstat
                           , col_metval_RefStatus
                           , col_metval_DataType
                           , col_metval_Subset
                           , col_metstat_RefStatus
                           , col_metstat_DataType
                           , col_metstat_Subset
                           , RefStatus_Ref
                           , RefStatus_Str
                           , RefStatus_Oth
                           , DataType_Cal
                           , DataType_Ver
                           , Subset_Value)

## Not run: 
# Save Results
write.table(df_stats2
            , file.path(tempdir(), "metric.stats2.tsv")
            , col.names = TRUE
            , row.names = FALSE
            , sep = "\t")

## End(Not run)

leppott/BioMonTools documentation built on March 1, 2025, 7:18 a.m.