Description Usage Arguments Details Value Author(s) References See Also Examples
scaleWMRR performs a scalespecific regression based on a wavelet multiresolution analysis.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
formula 
With specified notation according to names in data frame. 
family 

data 
Data frame. 
coord 
Corresponding coordinates which have to be integer. 
scale 
0 (which is equivalent to GLM) or higher integers possible (limit depends on sample size). 
detail 
Remove smooth wavelets? If 
wavelet 
Type of wavelet: 
wtrafo 
Type of wavelet transform: 
b.ini 
Initial parameter values. Default is 
pad 
A list of parameters for padding wavelet coefficients.

control 
A list of parameters for controlling the fitting process.

moran.params 
A list of parameters for calculating Moran's I.

trace 
A logical value indicating whether to print parameter estimates to the console 
This function fits generalized linear models while taking the
twodimensional grid structure of
datasets into account. The following error distributions (in
conjunction with appropriate link functions) are allowed: gaussian
,
binomial
, or poisson
. The model provides scalespecific
results for data sampled on a contiguous geographical area. The
dataset is assumed to be regular gridded and the grid cells are
assumed to be square. A function from the package 'waveslim' is used
for the wavelet transformations (Whitcher, 2005).
Furthermore, this function requires that all predictor variables
be continuous.
scaleWMRR returns a list containing the following elements
call
Model call
b
Estimates of regression parameters
s.e.
Standard errors of the parameter estimates
z
Z values (or corresponding values for statistics)
p
pvalues for each parameter estimate
df
Degrees of freedom
fitted
Fitted values
resid
Pearson residuals
converged
Logical value whether the procedure converged
trace
Logical. If TRUE:
ac.glm
Autocorrelation of glm.residuals
ac
Autocorrelation of wavelet.residuals
Gudrun Carl
Carl G, Doktor D, Schweiger O, Kuehn I (2016) Assessing relative variable importance across different spatial scales: a twodimensional wavelet analysis. Journal of Biogeography 43: 25022512.
Whitcher, B. (2005) Waveslim: basic wavelet routines for one, two and threedimensional signal processing. R package version 1.5.
waveslim,mra.2d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38  data(carlinadata)
coords < carlinadata[ ,4:5]
## Not run:
# scaleWMRR at scale = 0 is equivalent to GLM
ms0 < scaleWMRR(carlina.horrida ~ aridity + land.use,
family = "poisson",
data = carlinadata,
coord = coords,
scale = 0,
trace = TRUE)
# scalespecific regressions for detail components
ms1 < scaleWMRR(carlina.horrida ~ aridity + land.use,
family = "poisson",
data = carlinadata,
coord = coords,
scale = 1,
trace = TRUE)
ms2 < scaleWMRR(carlina.horrida ~ aridity + land.use,
family = "poisson",
data = carlinadata,
coord = coords,
scale = 2,
trace = TRUE)
ms3< scaleWMRR(carlina.horrida ~ aridity + land.use,
family = "poisson",
data = carlinadata,
coord = coords,
scale = 3,
trace = TRUE)
## End(Not run)

Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.