#' Run model2DE on several bootstrap resamples in parallel.
#'
#' Function to with the Q() function from the clustermq R-package with the following arguments in export:
#' data, target, exec, classPos, dummy_var, prune, maxDecay, typeDecay, filter, in_parallel, n_cores.
#' See preCluster() to obtain the list of boostraps resamples, the discretized data and exec dataframe with decisions.
#'
#' @param partition a vector with row numbers to subset data.
#' @example examples/iris_bootstraps.R
#' @export
model2DE_cluster <- function(partition) {
#library(data.table)
res <- model2DE(
data = data[partition, ], target = target[partition],
exec = exec,
classPos = classPos, dummy_var = dummy_var,
prune = prune, maxDecay = maxDecay, typeDecay = typeDecay,
filter = filter, min_imp = 1,
in_parallel = in_parallel, n_cores = n_cores,
light = TRUE
)
# get the position of the last set of computed rules
tmp <- str_which(names(res), pattern = 'rules')
tmp <- tmp[length(tmp)]
res <- list(
"pdecisions" = res$n_decisions,
"rules" = res$rules,
"nodes_agg" = res$nodes_agg, "edges_agg" = res$edges_agg
)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.