{#id .class width=300 height=300px}
WhEATBreeders was created to lower the bar for implementing genomic selection models for plant breeders to utilize within their own breeding programs. Not only does include functions for genotype quality control and filtering, but it includes easy to use wrappers for the most commonly use models in many scenarios with K-Fold cross-validation or validation sets. You can also implement GWAS assisted genomic selection. We created a full wrapper for quality control and genomci selection in our function "WHEAT". Additionaly we walk through the set up of unrpelicated data using adjuste means and calculate cullis heritability. We also go through multi-output and multi-trait wrappers for GWAS in GAPIt. Finally we walk through cross-prediction using PopVar, rrBLUP, and sommer.
For a full list of functions within WhEATBreeders see “Reference_Manual.pdf” this file contains not only the full list of functions but also a description of each. The pdf also has each functions arguments listed. And like with all R packages once WhEATBreeders is installed and loaded you can type ?function_name and that specific function’s full descriptions will appear in the help tab on RStudio.
First if you do not already have R and R studio installed on your computer head over to https://www.r-project.org/ and install the version appropriate for you machine. Once R and R studio are installed you will need to install the WhEATBreeders package since this is a working package in it’s early stages of development it’s only available through Github. To download files off Github first download and load the library of the package “devtools” using the code below.
if (!require("pacman")) install.packages("pacman") pacman::p_load(devtools) library(devtools) #Better for FDR function devtools::install_github("jiabowang/GAPIT3",force=TRUE) library(GAPIT3) if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("impute") #From the source #require(compiler) #for cmpfun #Only if you want the source code #source("http://zzlab.net/GAPIT/GAPIT.library.R") #source("http://zzlab.net/GAPIT/gapit_functions.txt") #make sure compiler is running #source("http://zzlab.net/GAPIT/emma.txt") if (!require("pacman")) install.packages("pacman") pacman::p_load(BGLR, rrBLUP, caret, tidyr, dplyr, Hmisc, WeightIt, mpath, glmnetUtils, glmnet, MASS, Metrics, stringr, lsa, keras, tensorflow, BMTME, plyr, data.table, bigmemory, biganalytics, ggplot2, tidyverse, knitr, cvTools, vcfR, compiler, gdata, PopVar, BLR, sommer, heritability, arm, optimx, purrr, psych, lme4, lmerTest, gridExtra, grid, readxl, devtools)
Next using the code below download and install the package WhEATBreeders from Github. The bottom two line of code in the chunk below make sure the dependencies WhEATBreeders relies on are also downloaded and installed.
#install package install_github("lfmerrick21/WhEATBreeders") library(WhEATBreeders)#package name
Phenotype <- read.csv(file="F:\\OneDrive\\OneDrive - Washington State University (email.wsu.edu)\\Documents\\MN Grant\\TCAP\\TCAP_EDX_GP.csv", header=T, sep=",", stringsAsFactors=F) #Fill-in phenotype file colnames(Phenotype)<-c("Genotype","Mg","P","K","Ca","Mn","Fe","Cu","Zn") length(unique(Phenotype$Genotype)) Phenotype$Env="TCAP_MN" Phenotype=Phenotype[,c(1,10,2:9)] Genotype <- read_excel("F:\\OneDrive\\OneDrive - Washington State University (email.wsu.edu)\\Documents\\MN Grant\\TCAP\\242_19192_nuc_hapmap.xlsx") sum(is.na(Genotype))
TCAP_QC=WHEAT(Phenotype=Phenotype, Genotype=Genotype, QC=TRUE, GS=FALSE, #QC Info Geno_Type="Hapmap", Imputation="KNN", Filter=TRUE, Missing_Rate=0.20, MAF=0.05, #Do not remove individuals Filter_Ind=FALSE, Missing_Rate_Ind=0.80, Trait=c("Mg","P","K","Ca","Mn","Fe","Cu","Zn"), Study="TCAP", Outcome="Tested", #Tested or Untested #Trial=c("F5_2015","DH_2020","BL_2015_2020"), Trial=c("TCAP_MN"), Scheme="K-Fold",#K-Fold or VS Method="Two-Step", #Two-Step or #One-Step Messages=TRUE)
You can do it for all columns but only needs to be done for the trait you intend to use in PopVar
load(file="GBS_2_TCAP.RData") GBS_2_TCAP_MN_Zn$pheno View(GBS_2_TCAP_MN_Zn$numeric) #Remove taxa column num=GBS_2_TCAP_MN_Zn$numeric[,-1] #Convert numeric alleles to -1,0,1 num=apply(num,2,function(x) recode(x,"0"="-1","1"="0","2"="1")) #Makes sure all columns are numeric num=apply(num,2,as.numeric) View(num) num=data.frame(GBS_2_TCAP_MN_Zn$numeric$taxa,num) num=rbind(colnames(num),num) num=num[-1,] colnames(num)[1]<-"taxa" num$taxa=as.character(num$taxa) num[1,1]="taxa" View(num) GBS_2_TCAP_MN_Zn$PopVar=as.matrix(num) View(GBS_2_TCAP_MN_Zn$PopVar) GBS_2_TCAP_MN_Zn$pheno=cbind( GBS_2_TCAP_MN_Zn$pheno, Ca=GBS_2_TCAP_MN_Ca$pheno[,2], Cu=GBS_2_TCAP_MN_Cu$pheno[,2], Fe=GBS_2_TCAP_MN_Fe$pheno[,2], K=GBS_2_TCAP_MN_K$pheno[,2], Mg=GBS_2_TCAP_MN_Mg$pheno[,2], Mn=GBS_2_TCAP_MN_Mn$pheno[,2], P=GBS_2_TCAP_MN_P$pheno[,2]) colnames(GBS_2_TCAP_MN_Zn$pheno)[1]="taxa" save(GBS_2_TCAP_MN_Zn,file="TCAP_MN_Zn.RData") dim(GBS_2_TCAP_MN_Zn$PopVar) dim(GBS_2_TCAP_MN_Zn$pheno) dim(GBS_2_TCAP_MN_Zn$map)
This is where you can specify different models and such and can be customized following the PopVar documentation.
load(file="TCAP_MN_Zn.RData") library(PopVar) TCAP_PopVar=pop.predict(G.in = as.matrix(GBS_2_TCAP_MN_Zn$PopVar), y.in =as.matrix(GBS_2_TCAP_MN_Zn$pheno), map.in = as.matrix(GBS_2_TCAP_MN_Zn$map), crossing.table = NULL, parents = "TP", tail.p = 0.1, nInd = 200, map.plot = T, min.maf = 0.01, mkr.cutoff = 0.50, entry.cutoff = 0.50, remove.dups = F, impute = "pass", nSim = 25, frac.train = 0.8, nCV.iter = 10, nFold = 5, nFold.reps = 10, nIter = 12000, burnIn = 3000, models = c("rrBLUP"), return.raw = T) save(TCAP_PopVar,file = "TCAP_PopVar_NC.RData")
The PopVar output is a ton of lists which is hard to visualize and use. It consisted of 31 columns due to the secondary selection for the other 7 traits than Zn
load(file="TCAP_PopVar_NC.RData") TCAP_PopVar$CVs$Zn TCAP_PopVar$predictions$Zn_param.df TCAP_PopVar$preds.per.sim$Zn_param.df TCAP_PopVar$models.chosen TCAP_PopVar$markers.removed TCAP_PopVar$entries.removed try=data.frame(TCAP_PopVar$predictions$Zn_param.df) try1=unlist(try$Par1) try2=unlist(try$Par2) try3=unlist(try$midPar.Pheno) try4=unlist(try$midPar.GEBV) try5=unlist(try$pred.mu) try6=unlist(try$pred.mu_sd) try7=unlist(try$pred.varG) try8=unlist(try$pred.varG_sd) try9=unlist(try$mu.sp_low) try10=unlist(try$mu.sp_high) try11=unlist(try$low.resp_Mg) try12=unlist(try$low.resp_P) try13=unlist(try$low.resp_Ca) try14=unlist(try$low.resp_Mn) try15=unlist(try$low.resp_Fe) try16=unlist(try$low.resp_Cu) try17=unlist(try$low.resp_Zn) try18=unlist(try$high.resp_Mg) try19=unlist(try$high.resp_P) try20=unlist(try$high.resp_Ca) try21=unlist(try$high.resp_Mn) try22=unlist(try$high.resp_Fe) try23=unlist(try$high.resp_Cu) try24=unlist(try$high.resp_Zn) try25=unlist(try$cor_w._Mg) try26=unlist(try$cor_w._P) try27=unlist(try$cor_w._Ca) try28=unlist(try$cor_w._Mn) try29=unlist(try$cor_w._Fe) try30=unlist(try$cor_w._Cu) try31=unlist(try$cor_w._Zn) PopVar_Names=colnames(TCAP_PopVar$predictions$Zn_param.df) Popvar_Zn=data.frame(try1,try2,try3,try4,try5,try6,try7,try8,try9,try10,try11,try12,try13,try14,try15,try16,try18,try19,try20,try21,try22,try23,try25,try26,try27,try28,try29,try30) PopVar_Zn_Names=PopVar_Names[-c(17,24,31)] colnames(Popvar_Zn)<-PopVar_Zn_Names Popvar_Zn[1:10,1:28] View(Popvar_Zn[1:10,1:28])
library(rrBLUP) #load rrBLUP library(BGLR) #load BLR library(BLR) data(wheat) #load wheat data X=wheat.X Y=wheat.Y G <- 2*X-1 #recode genotypes y <- Y[,1] #yields from E1 #marker-based ans1 <- mixed.solve(y=y,Z=G,SE=TRUE) ans1$u ans1$beta ans1$u.SE GEBV=G%*%ans1$u fix=ans1$beta GEBVF=c(GEBV)+c(fix) GEBVSD=G%*%ans1$u.SE plot(GEBVF,GEBVSD)
GEBV.pb <- GEBV # this are the BV rownames(GEBV.pb) <- 1:nrow(GEBV) crosses <- do.call(expand.grid, list(rownames(GEBV.pb),rownames(GEBV.pb))); crosses cross2 <- duplicated(t(apply(crosses, 1, sort))) crosses2 <- crosses[cross2,]; head(crosses2); dim(crosses2)
# get GCA1 and GCA2 of each hybrid GCA1 = GEBV.pb[match(crosses2[,1], rownames(GEBV.pb))] GCA2 = GEBV.pb[match(crosses2[,2], rownames(GEBV.pb))] #### join everything and get the mean BV for each combination BV <- data.frame(crosses2,GCA1,GCA2); head(BV) BV$BVcross <- apply(BV[,c(3:4)],1,mean); head(BV) BV$BVcrossvar <- apply(BV[,c(3:4)],1,var); head(BV) BV$BVcrosssum <- apply(BV[,c(5:6)],1,sum); head(BV) BV$BVcrosssd <- apply(BV[,c(3:4)],1,sd); head(BV) dim(BV) plot(BV$BVcross~BV$BVcrosssd) library(ggplot2) ggplot(BV,aes(x=BVcrosssd,y=BVcross))+geom_point() BV BV[order(BV$BVcross,decreasing=TRUE),]
library(sommer) y <- Y[,1] # response grain yield Z1 <- diag(length(y)) # incidence matrix K <- A.mat(X) # additive relationship matrix #### perform the GBLUP pedigree-based approach by ### specifying your random effects (ETA) in a 2-level list ### structure and run it using the mmer function ETA <- list(add=list(Z=Z1, K=K)) ans <- mmer(y=y, Z=ETA, method="EMMA") # kinship based summary(ans)
For more information on individual functions please see the “Reference_Manual.pdf” or type ?FUNCITON_NAME into the R console, this will pull up specific information of each function inside WhEATBreeders. For example typing ?manhattan_plot will pull of the help page with details about the function that creates the Manhattan plots.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.