runInfluence | R Documentation |
Assessing the influece of each correlated block on both the precision of the parameter estimates (COVRATIO statistics) and the sensitivity of model predictions (PRESS statistics).
runInfluence(model, id = NULL, save = FALSE, dots = FALSE)
model |
Fitted model object (glm, gamMRSea or gam) |
id |
blocking structure |
save |
( |
dots |
( |
Always run timeInfluenceCheck
first to see how long it will take to produce the plots.
Two plots one each for COVRATIO and PRESS statistics, giving the influence of each block on precision of the parameter estimates and the sensitivity of model predictions. List object:
influenceData |
List of |
influencePoints |
Row id of blocks in |
# load data
data(ns.data.re)
ns.data.re$blockid<-paste(ns.data.re$GridCode, ns.data.re$Year, ns.data.re$MonthOfYear,
ns.data.re$DayOfMonth, sep='')
ns.data.re$blockid<-as.factor(ns.data.re$blockid)
model<-gamMRSea(birds ~ observationhour + as.factor(floodebb) + as.factor(impact),
family='poisson', data=ns.data.re)
timeInfluenceCheck(model, ns.data.re$blockid)
## Not run:
# **WARNING** this example takes a long time
influences<-runInfluence(model, ns.data.re$blockid)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.