## ---- eval=FALSE---------------------------------------------------------
# # 'MSstatsInput.csv' is the MSstats report from Skyline.
# input <- read.csv(file="MSstatsInput.csv")
#
# raw <- SkylinetoMSstatsFormat(input)
## ---- eval=FALSE---------------------------------------------------------
# # Read in MaxQuant files
# proteinGroups <- read.table("proteinGroups.txt", sep="\t", header=TRUE)
#
# infile <- read.table("evidence.txt", sep="\t", header=TRUE)
#
# # Read in annotation including condition and biological replicates per run.
# # Users should make this annotation file. It is not the output from MaxQuant.
# annot <- read.csv("annotation.csv", header=TRUE)
#
# raw <- MaxQtoMSstatsFormat(evidence=infile,
# annotation=annot,
# proteinGroups=proteinGroups)
## ---- eval=FALSE---------------------------------------------------------
# input <- read.csv("output_progenesis.csv", stringsAsFactors=F)
#
# # Read in annotation including condition and biological replicates per run.
# # Users should make this annotation file. It is not the output from Progenesis.
# annot <- read.csv('annotation.csv')
#
# raw <- ProgenesistoMSstatsFormat(input, annotation=annot)
## ---- eval=FALSE---------------------------------------------------------
# input <- read.csv("output_spectronaut.csv", stringsAsFactors=F)
#
# quant <- SpectronauttoMSstatsFormat(input)
## ---- eval=FALSE---------------------------------------------------------
# QuantData <- dataProcess(SRMRawData)
## ---- eval=FALSE---------------------------------------------------------
# QuantData <- dataProcess(SRMRawData)
#
# # Profile plot
# dataProcessPlots(data=QuantData, type="ProfilePlot")
#
# # Quality control plot
# dataProcessPlots(data=QuantData, type="QCPlot")
#
# # Quantification plot for conditions
# dataProcessPlots(data=QuantData, type="ConditionPlot")
## ---- eval=FALSE---------------------------------------------------------
# QuantData <- dataProcess(SRMRawData)
#
# levels(QuantData$ProcessedData$GROUP_ORIGINAL)
# comparison <- matrix(c(-1,0,0,0,0,0,1,0,0,0), nrow=1)
# row.names(comparison) <- "T7-T1"
#
# # Tests for differentially abundant proteins with models:
# testResultOneComparison <- groupComparison(contrast.matrix=comparison, data=QuantData)
## ---- eval=FALSE---------------------------------------------------------
# QuantData <- dataProcess(SRMRawData)
#
# # based on multiple comparisons (T1 vs T3; T1 vs T7; T1 vs T9)
# comparison1<-matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1)
# comparison2<-matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)
# comparison3<-matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1)
# comparison<-rbind(comparison1,comparison2, comparison3)
# row.names(comparison)<-c("T3-T1","T7-T1","T9-T1")
#
# testResultMultiComparisons <- groupComparison(contrast.matrix=comparison, data=QuantData)
#
# # Volcano plot
# groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="VolcanoPlot")
#
# # Heatmap
# groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="Heatmap")
#
# # Comparison Plot
# groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="ComparisonPlot")
## ---- eval=FALSE---------------------------------------------------------
# testResultOneComparison <- groupComparison(contrast.matrix=comparison, data=QuantData)
#
# # normal quantile-quantile plots
# modelBasedQCPlots(data=testResultOneComparison, type="QQPlots")
#
# # residual plots
# modelBasedQCPlots(data=testResultOneComparison, type="ResidualPlots")
## ---- eval=FALSE---------------------------------------------------------
# QuantData <- dataProcess(SRMRawData)
# head(QuantData$ProcessedData)
#
# ## based on multiple comparisons (T1 vs T3; T1 vs T7; T1 vs T9)
# comparison1 <- matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1)
# comparison2 <- matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)
# comparison3 <- matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1)
# comparison <- rbind(comparison1,comparison2, comparison3)
# row.names(comparison) <- c("T3-T1","T7-T1","T9-T1")
#
# testResultMultiComparisons <- groupComparison(contrast.matrix=comparison,data=QuantData)
#
# #(1) Minimal number of biological replicates per condition
# designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=TRUE,
# desiredFC=c(1.25,1.75), FDR=0.05, power=0.8)
#
# #(2) Power calculation
# designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=2,
# desiredFC=c(1.25,1.75), FDR=0.05, power=TRUE)
## ---- eval=FALSE---------------------------------------------------------
# # (1) Minimal number of biological replicates per condition
# result.sample <- designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=TRUE,
# desiredFC=c(1.25,1.75), FDR=0.05, power=0.8)
# designSampleSizePlots(data=result.sample)
#
# # (2) Power
# result.power <- designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=2,
# desiredFC=c(1.25,1.75), FDR=0.05, power=TRUE)
# designSampleSizePlots(data=result.power)
## ---- eval=FALSE---------------------------------------------------------
# QuantData <- dataProcess(SRMRawData)
#
# # Sample quantification
# sampleQuant <- quantification(QuantData)
#
# # Group quantification
# groupQuant <- quantification(QuantData, type="Group")
## ---- eval=FALSE---------------------------------------------------------
# # Consider data from a spiked-in contained in an example dataset
# head(SpikeInDataNonLinear)
#
# nonlinear_quantlim_out <- nonlinear_quantlim(SpikeInDataNonLinear)
#
# # Get values of LOB/LOD
# nonlinear_quantlim_out$LOB[1]
# nonlinear_quantlim_out$LOD[1]
## ---- eval=FALSE---------------------------------------------------------
# # Consider data from a spiked-in contained in an example dataset
# head(SpikeInDataLinear)
#
# linear_quantlim_out <- linear_quantlim(SpikeInDataLinear)
#
# # Get values of LOB/LOD
# linear_quantlim_out$LOB[1]
# linear_quantlim_out$LOD[1]
## ---- eval=FALSE---------------------------------------------------------
# # Consider data from a spiked-in contained in an example dataset
# head(SpikeInDataNonLinear)
#
# nonlinear_quantlim_out <- nonlinear_quantlim(SpikeInDataNonLinear, alpha = 0.05)
#
# #Get values of LOB/LOD
# nonlinear_quantlim_out$LOB[1]
# nonlinear_quantlim_out$LOD[1]
#
# plot_quantlim(spikeindata = SpikeInDataLinear, quantlim_out = nonlinear_quantlim_out,
# dir_output = getwd(), alpha = 0.05)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.