context("check routines in triangular.matrix.R")
test_that("check routines in triangular.matrix.R", {
eps <- 1e-2
for(d in c(1,3))
{
mfd <- matrix.manifold('ltpd','LogCholesky',dim=c(d,d))
A <- rmat(d,d)
P <- make.sym(A %*% t(A))
L <- ch(P)
expect_true(is.lower(L))
expect_true(is.ltpd(L))
W <- rtvecor.ltpd_LogCholesky(mfd,1)
V <- rtvecor.ltpd_LogCholesky(mfd,1)
m <- rie.metric.ltpd_LogCholesky(mfd,L,W,V)
expect_true(abs(m-metric.chol(L,W,V)) < eps)
W <- runif(1) * W / sqrt(rie.metric.ltpd_LogCholesky(mfd,P,W,W))
S <- rie.exp.ltpd_LogCholesky(mfd,P,W)
V <- rie.log.ltpd_LogCholesky(mfd,P,S)
expect_true(frobenius.norm(W-V) < eps)
t <- runif(1)
W <- W / sqrt(rie.metric.ltpd_LogCholesky(mfd,P,W,W))
S <- geodesic.ltpd_LogCholesky(mfd,P,W,t)
expect_true(abs(geo.dist.ltpd_LogCholesky(mfd,P,S)-t) < eps)
W <- W / sqrt(rie.metric.ltpd_LogCholesky(mfd,P,W,W))
t <- runif(2)
Qs <- geodesic.ltpd_LogCholesky(mfd,P,W,t)
Q <- as.matrix(Qs[,,1])
X <- parallel.transport.ltpd_LogCholesky(mfd,P,Q,V)
Y <- parallel.transport.ltpd_LogCholesky(mfd,P,Q,W)
expect_true(abs(rie.metric.ltpd_LogCholesky(mfd,P,W,V)-
rie.metric.ltpd_LogCholesky(mfd,Q,X,Y)) < eps)
mfd <- matrix.manifold('ltpd','LogCholesky',c(d,d))
for(n in c(1,10))
{
mu <- diag(rep(1,d))
S <- rmatrix.ltpd_LogCholesky(mfd,n,drop=F,mu=mu)
expect_true(all(sapply(1:n, function(i){
is.ltpd(as.matrix(S[,,i]))
})))
V <- rtvecor.ltpd_LogCholesky(mfd,n=n,sig=0.1,drop=F)
expect_true(all(sapply(1:n, function(i){
is.lower(as.matrix(V[,,i]))
})))
mu <-rmatrix.ltpd_LogCholesky(mfd,n=1)
V <- center.matrices(V)
Q <- array(0,c(d,d,n))
for(i in 1:n)
{
Q[,,i] <- rie.exp.ltpd_LogCholesky(mfd,mu,as.matrix(V[,,i]))
}
Q.mu <- frechet.mean.ltpd_LogCholesky(mfd,Q)
expect_true(frobenius.norm(mu-Q.mu) < eps)
}
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.