Description Usage Arguments Examples
This function is the wrapper of fitting functions for doseInt
1 2 3 4 |
train |
the training data set. |
method |
specified methods used for DC and ordinal approaches. |
type |
indicates whether PDI or EDI is to be calculated. |
pred0 |
the initial prediction for training data set, if NULL, default initialization is used |
maxiter |
maximal iterations for DC algorithm |
step |
stepsize for DC algorithm |
trace |
the level of detail to be printed: 1,2,3,4 |
lower |
True or False, Whether lower boundary is considered when applied to one-sided interval |
nfolds |
the number of folds used in cross-validation. |
alpha |
the guaranteed probability in PDI and the relative loss in EDI. Default is c(0.5,0.5). |
two.sided |
indicator of whether two-sided interval is considered. |
breaks |
ways 'as.ordinal' cuts continuous treatment into several ordinal levels, default 'quantile'. User can also choose 'uniform' or specify customized breaks |
Eps |
parameter for the relaxation |
Lambda |
penalty for the quantile regression |
Cost |
cost for the support vector machine |
Embed.mtry |
proportion of mtry |
1 2 3 4 5 6 7 8 9 10 11 12 | train1=Scenario1.continuous(1000,5,1)
test1=Scenario1.continuous(10000,5,1)
fit1=DCDI1(train1,alpha=c(0.5,0.5),method='rq',trace=3)
predNew1=predict(fit1,test1)
cor(predNew1$pred,test1$opt)^2
train3=Scenario3.continuous(2000,5,3)
test3=Scenario3.continuous(10000,5,3)
fit3=DCDI2(train3,alpha=c(0.5,0.5),method='rq',trace=3)
predNew3=predict(fit3,test3)
cor(predNew3$pred_L,test3$opt_L)^2
cor(predNew3$pred_R,test3$opt_R)^2
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.