DCDI1: Fits dose interval using DC-algorithm

Description Usage Arguments Examples

Description

This function is the wrapper of fitting functions for doseInt

Usage

1
2
3
4
DCDI1(train, method = "rq", type = "PDI", pred0 = NULL, maxiter = 20,
  step = 1, trace = 0, lower = TRUE, eps = NULL, aL = NULL,
  aU = NULL, lambda = 1e-07, cost = 1, embed.mtry = 1/2,
  svmKernel = NULL, ...)

Arguments

train

the training data set.

method

specified methods used for DC and ordinal approaches.

type

indicates whether PDI or EDI is to be calculated.

pred0

the initial prediction for training data set, if NULL, default initialization is used

maxiter

maximal iterations for DC algorithm

step

stepsize for DC algorithm

trace

the level of detail to be printed: 1,2,3,4

lower

True or False, Whether lower boundary is considered when applied to one-sided interval

nfolds

the number of folds used in cross-validation.

alpha

the guaranteed probability in PDI and the relative loss in EDI. Default is c(0.5,0.5).

two.sided

indicator of whether two-sided interval is considered.

breaks

ways 'as.ordinal' cuts continuous treatment into several ordinal levels, default 'quantile'. User can also choose 'uniform' or specify customized breaks

Eps

parameter for the relaxation

Lambda

penalty for the quantile regression

Cost

cost for the support vector machine

Embed.mtry

proportion of mtry

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
  train1=Scenario1.continuous(1000,5,1)
  test1=Scenario1.continuous(10000,5,1)
  fit1=DCDI1(train1,alpha=c(0.5,0.5),method='rq',trace=3)
  predNew1=predict(fit1,test1)
  cor(predNew1$pred,test1$opt)^2

  train3=Scenario3.continuous(2000,5,3)
  test3=Scenario3.continuous(10000,5,3)
  fit3=DCDI2(train3,alpha=c(0.5,0.5),method='rq',trace=3)
  predNew3=predict(fit3,test3)
  cor(predNew3$pred_L,test3$opt_L)^2
  cor(predNew3$pred_R,test3$opt_R)^2

lixiaomao/personalized-dosing-interval documentation built on May 16, 2019, 9:14 p.m.