Weber_BCR_XL_sim | R Documentation |
Semi-simulated mass cytometry (CyTOF) datasets from Weber et al. (2019), constructed by randomly splitting unstimulated (reference) samples of PBMCs (peripheral blood mononuclear cells) into two halves, and replacing B cells in one half with stimulated (BCR-XL) B cells from corresponding paired samples. These datasets can be used to benchmark differential analysis algorithms used to test for differential states within cell populations. Raw data sourced from Bodenmiller et al. (2012); cell population labels reproduced from Nowicka et al. (2017). See Weber et al. (2019) Supplementary Note 1, for more details.
Weber_BCR_XL_sim_main_SE(metadata = FALSE)
Weber_BCR_XL_sim_main_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_null_rep1_SE(metadata = FALSE)
Weber_BCR_XL_sim_null_rep1_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_null_rep2_SE(metadata = FALSE)
Weber_BCR_XL_sim_null_rep2_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_null_rep3_SE(metadata = FALSE)
Weber_BCR_XL_sim_null_rep3_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_random_seeds_rep1_SE(metadata = FALSE)
Weber_BCR_XL_sim_random_seeds_rep1_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_random_seeds_rep2_SE(metadata = FALSE)
Weber_BCR_XL_sim_random_seeds_rep2_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_random_seeds_rep3_SE(metadata = FALSE)
Weber_BCR_XL_sim_random_seeds_rep3_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_less_distinct_less_50pc_SE(metadata = FALSE)
Weber_BCR_XL_sim_less_distinct_less_50pc_flowSet(metadata = FALSE)
Weber_BCR_XL_sim_less_distinct_less_75pc_SE(metadata = FALSE)
Weber_BCR_XL_sim_less_distinct_less_75pc_flowSet(metadata = FALSE)
metadata |
|
This is a set of semi-simulated mass cytometry (CyTOF) datasets, generated for benchmarking purposes in our paper introducing the 'diffcyt' framework (Weber et al., 2019).
The datasets are constructed by randomly splitting unstimulated (reference) samples of PBMCs (peripheral blood mononuclear cells) into two halves, and replacing B cells in one half with stimulated (BCR-XL) B cells from corresponding paired samples. Strong differential expression signals exist for several signaling state markers in B cells between the stimulated (BCR-XL) and unstimulated (reference) conditions; in particular phosphorylated S6 (pS6).
These datasets can be used to benchmark differential analysis algorithms used to test for differential states within cell populations.
The raw data consists of 8 paired samples (i.e. 16 samples in total), and a total of 172,791 cells. The dataset contains expression levels of 24 protein markers (10 surface markers used to define cell populations, and 14 intracellular signaling markers). Cell population labels are reproduced from Nowicka et al. (2017). For more details, see Weber et al. (2019), Supplementary Note 1 (in particular Supplementary Tables 3 and 4).
Multiple simulations are available, as described in our paper (Weber et al., 2019). These are stored in the objects listed below.
In each case, the objects are available in both SummarizedExperiment
and
flowSet
formats, with cells stored in rows, and protein markers in columns (i.e.
the usual format for cytometry data). After loading the datasets, they can be inspected using the
standard accessor functions for either SummarizedExperiments
or flowSets
(e.g. for
SummarizedExperiments
: rowData
, colData
, assays
,
and metadata
).
For the SummarizedExperiments
: assays
contain tables of expression values
(with multiple objects for datasets with multiple replicates; note that the replicates cannot be
combined as multiple assays
within a single object because each replicate has different row data);
rowData
contains group IDs, patient IDs, sample IDs, cell population IDs, and columns identifying
B cells and spike-in cells;
colData
contains channel names, marker names, and marker classes; and
metadata
contains experiment information and number of cells.
For the flowSets
: individual flowFrames
within the flowSet
contain tables
of expression values (with multiple flowSet
objects for datasets with multiple replicates);
row data is stored as additional columns of numeric values within the expression tables;
column data is stored in the pData(parameters())
slot of the individual flowFrames
; and
additional information (e.g. experiment information, marker information, replicate information,
and lookup tables to identify row data values) is stored in the description()
slot of
the flowFrames
.
Main simulations
Weber_BCR_XL_sim_main_SE (12.7 MB)
Weber_BCR_XL_sim_main_flowSet (12.7 MB)
Additional simulations: null simulations
Separate files for each replicate.
Weber_BCR_XL_sim_null_rep1_SE (12.7 MB)
Weber_BCR_XL_sim_null_rep1_flowSet (12.7 MB)
Weber_BCR_XL_sim_null_rep2_SE (12.7 MB)
Weber_BCR_XL_sim_null_rep2_flowSet (12.7 MB)
Weber_BCR_XL_sim_null_rep3_SE (12.7 MB)
Weber_BCR_XL_sim_null_rep3_flowSet (12.7 MB)
Additional simulations: modified random seeds
Separate files for each replicate.
Weber_BCR_XL_sim_random_seeds_rep1_SE (12.7 MB)
Weber_BCR_XL_sim_random_seeds_rep1_flowSet (12.7 MB)
Weber_BCR_XL_sim_random_seeds_rep2_SE (12.7 MB)
Weber_BCR_XL_sim_random_seeds_rep2_flowSet (12.7 MB)
Weber_BCR_XL_sim_random_seeds_rep3_SE (12.7 MB)
Weber_BCR_XL_sim_random_seeds_rep3_flowSet (12.7 MB)
Additional simulations: 'less distinct' spike-in cells
Separate files for each replicate.
Weber_BCR_XL_sim_less_distinct_less_50pc_SE (13.1 MB)
Weber_BCR_XL_sim_less_distinct_less_50pc_flowSet (13.1 MB)
Weber_BCR_XL_sim_less_distinct_less_75pc_SE (13.1 MB)
Weber_BCR_XL_sim_less_distinct_less_75pc_flowSet (13.1 MB)
Note that prior to performing any downstream analyses, the expression values should be
transformed. A standard transformation used for mass cytometry data is the asinh
with cofactor = 5
.
The raw data is sourced from Bodenmiller et al. (2012), and cell population labels are reproduced from Nowicka et al. (2017). See Weber et al. (2019), Supplementary Note 1, for more details.
Original link to raw data (Cytobank, experiment 15713): https://community.cytobank.org/cytobank/experiments/15713/download_files
Additional information (Citrus
wiki page): https://github.com/nolanlab/citrus/wiki/PBMC-Example-1
Data files are also available from FlowRepository (FR-FCM-ZYL8): http://flowrepository.org/id/FR-FCM-ZYL8
Returns a SummarizedExperiment
or flowSet
object.
Bodenmiller et al. (2012). "Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators." Nature Biotechnology, 30(9), 858-867: https://www.ncbi.nlm.nih.gov/pubmed/22902532
Nowicka et al. (2017). "CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets." F1000Research, v2: https://f1000research.com/articles/6-748/v2
Weber et al. (2019). "diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering." Communications Biology, 2:183: https://www.ncbi.nlm.nih.gov/pubmed/31098416
Weber_BCR_XL_sim_main_SE()
Weber_BCR_XL_sim_main_flowSet()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.