inmar_hmm_mle: Maximum likelihood estimation of multivariate normal...

View source: R/indep_multivariate_autoregressive_hmm_functions.R

inmar_hmm_mleR Documentation

Maximum likelihood estimation of multivariate normal parameters

Description

Maximum likelihood estimation of multivariate normal parameters

Usage

inmar_hmm_mle(
  x,
  m,
  q,
  k,
  mu0,
  sigma0,
  gamma0,
  phi0,
  delta0 = NULL,
  stationary = TRUE,
  hessian = FALSE,
  steptol = 1e-06,
  iterlim = 100,
  stepmax = 100,
  state = NULL
)

Arguments

x

Matrix of observations, rows represent each variable

m

Number of states

mu0

List of vectors of length m, initial values for means for white noise

sigma0

List of vectors of length m, initial values for standard deviations

gamma0

Initial values for ransition probabiilty matrix, size m x m

phi0

List of matrices of size k x q, initial values for autoregressive parameters.

delta0

Optional, vector of length m containing initial values initial distribution

stationary

Boolean, whether the HMM is stationary or not

hessian

Boolean, whether to return the inverse hessian

state

List of state values, if provided. 0 represents an unknown state value.

Value

List of results


longjess/hornsharkHMM documentation built on June 15, 2022, 11:32 p.m.