View source: R/multivariate_autoregressive_hmm_functions.R
mar_hmm_mle | R Documentation |
Maximum likelihood estimation of multivariate normal parameters
mar_hmm_mle( x, m, q, k, mu0, sigma0, gamma0, phi0, delta0 = NULL, stationary = TRUE, hessian = FALSE )
x |
Matrix of observations, rows represent each variable |
m |
Number of states |
mu0 |
List of vectors of length m, initial values for means for white noise |
sigma0 |
List of matrices of size m x m, initial values for covariance matrices |
gamma0 |
Initial values for ransition probabiilty matrix, size m x m |
phi0 |
List of matrices of size k x (k x q), initial values for autoregressive parameters |
delta0 |
Optional, vector of length m containing initial values initial distribution |
stationary |
Boolean, whether the HMM is stationary or not |
hessian |
Boolean, whether to return the inverse hessian |
List of results
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.