knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/"
)

simpleSens is a package designed to make simple sensitivity analysis for unmeasured confounding, selection bias, and misclassification easy.

Installation

library(simpleSens)

Usage

There are two main types of sensitivity analysis that this package allows for:

# Calculate an E-value for unmeasured confounding
calculate_evalue(RRobs = 4, biases = list(confounding()))

# Calculate an E-value for selection bias and misclassification
calculate_evalue(RRobs = 2.5,
         biases = list(selection("selected"), misclassification("outcome")))

# Calculate an E-value for all three available types of bias
calculate_evalue(RRobs = 1.4234,
         biases = list(selection("general", "S = U"),
                       misclassification("exposure", outcome_rare = TRUE,
                                                     exposure_rare = TRUE),
                       confounding()))
# get sensitivity parameters for a combination of biases
get_param_info(
  biases =
    list(confounding(), 
         misclassification("exposure", exposure_rare = FALSE, outcome_rare = TRUE))
)
# calculate bound with those parameters
calculate_bound(
  RRUY = 2, RRAU = 1.5, RRYAa = 3,
  biases =
    list(confounding(), 
         misclassification("exposure", exposure_rare = FALSE, outcome_rare = TRUE))
)


louisahsmith/simpleSens documentation built on March 19, 2020, 12:07 a.m.