knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(simpleSens)
# confounding calculate_bound(RRAU = 2, RRUY = 2, biases = confounding()) param_vals <- c(1.3, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10) params <- expand.grid( RRAU = param_vals, RRUY = param_vals ) table_1_vals <- mapply(calculate_bound, RRAU = params$RRAU, RRUY = params$RRUY, MoreArgs = list(biases = confounding()) ) table_1 <- matrix(table_1_vals, ncol = length(param_vals), dimnames = list(param_vals, param_vals) ) round(table_1, 2) # reduce to number other than 1 calculate_evalue(RRobs = 2.5, biases = confounding()) # figure out how to make plot ######### selection get_param_info(biases = selection("general")) calculate_bound( RRSUA0 = 1.5, RRSUA1 = 1.7, RRUYA0 = 2, RRUYA1 = 2, biases = selection("general") ) calculate_evalue(RRobs = 73.1, biases = selection("general")) calculate_evalue(RRobs = 5.2, biases = selection("S = U", "increased risk")) calculate_evalue(RRobs = 1.5, biases = selection("selected")) # misclassification calculate_evalue(RRobs = 1.5, biases = misclassification("outcome")) calculate_evalue(RRobs = 1.5, biases = misclassification("exposure", exposure_rare = TRUE, outcome_rare = TRUE)) # from paper example1 <- list( selection("decreased risk"), misclassification("outcome") ) example2 <- list( confounding(), misclassification('exposure', outcome_rare = TRUE, exposure_rare = TRUE) ) calculate_bound(RRAYy = 1.125, RRUYA0 = 2, RRSUA0 = 1.5, biases = example1) calculate_bound(RRYAa = 1.59, RRUY = 1/0.82, RRAU = 2, biases = example2) #calculate_evalue(ORobs = 1.30, outcome_rare = TRUE, biases = example1) calculate_evalue(RRobs = 1.30, biases = example1) # calculate_evalue(ORobs = 0.51, outcome_rare = TRUE, biases = example2) calculate_evalue(RRobs = 1/0.51, biases = example2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.