context("Preprocess_covar_table")
test_that("Where all phenotypes have variability and without nulls, returns all pheno selected variables for all samples ", {
#Arrange
phenotypes = data.frame(
sample = sprintf('user_%s', 1:5),
gender = c('male', 'male', rep('female', 3)),
age = seq(50, 54, 1),
stringsAsFactors = FALSE
)
#Act
clean_pheno = preprocess_phenotypes(
phenotypes,
'sample', c('age', 'gender')
)
#Assert
expect_equal(nrow(clean_pheno), 5)
expect_equal(colnames(clean_pheno), c('age', 'gender'))
})
test_that("With phenotypes without variability, this column should be removed ", {
#Arrange
phenotypes = data.frame(
sample = sprintf('user_%s', 1:5),
gender = c(rep('female', 5)),
age = seq(50, 54, 1),
stringsAsFactors = FALSE
)
#Act
clean_pheno = preprocess_phenotypes(
phenotypes,
'sample', c('age', 'gender')
)
#Assert
expect_equal(nrow(clean_pheno), 5)
expect_equal(colnames(clean_pheno), c('age'))
})
test_that("With samples with at least one null, they should be removed, and should be performed before removing variability ", {
#Arrange
phenotypes = data.frame(
sample = sprintf('user_%s', 1:5),
gender = c('male', rep('female', 4)),
age = c(NA, seq(51, 54, 1)),
stringsAsFactors = FALSE
)
#Act
clean_pheno = preprocess_phenotypes(
phenotypes,
'sample', c('age', 'gender')
)
#Assert
expect_equal(rownames(clean_pheno), phenotypes$sample[-1])
expect_equal(nrow(clean_pheno), 4)
expect_equal(colnames(clean_pheno), c('age'))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.