| msir.bic | R Documentation | 
BIC-type criterion for selecting the dimensionality of a dimension reduction subspace.
msir.bic(object, type = 1, plot = FALSE)
bicDimRed(M, x, nslices, type = 1, tol = sqrt(.Machine$double.eps))
object | 
 a   | 
plot | 
 if   | 
M | 
 the kernel matrix. See details below.  | 
x | 
 the predictors data matrix. See details below.  | 
type | 
 See details below.  | 
nslices | 
 the number of slices. See details below.  | 
tol | 
 a tolerance value  | 
This BIC-type criterion for the determination of the structural dimension selects d as the maximizer of
G(d) = l(d) - Penalty(p,d,n)
where l(d) is the log-likelihood for dimensions up to d, p is the number of predictors, and n is the sample size.
The term Penalty(p,d,n) is the type of penalty to be used:
type = 1: Penalty(p,d,n) = -(p-d) \log(n)
type = 2: Penalty(p,d,n) = 0.5 C d (2p-d+1), where C = (0.5 \log(n) + 0.1 n^(1/3))/2  nslices/n
type = 3: Penalty(p,d,n) = 0.5 C d (2p-d+1), where C = \log(n) nslices/n
type = 4 Penalty(p,d,n) = 1/2 d \log(n)
Returns a list with components:
evalues | 
 eigenvalues  | 
l | 
 log-likelihood  | 
crit | 
 BIC-type criterion  | 
d | 
 selected dimensionality  | 
The msir.bic also assign the above information to the corresponding 'msir' object.
Luca Scrucca luca.scrucca@unipg.it
Zhu, Miao and Peng (2006) "Sliced Inverse Regression for CDR Space Estimation", JASA.
Zhu, Zhu (2007) "On kernel method for SAVE", Journal of Multivariate Analysis.
msir
# 1-dimensional symmetric response curve
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- (0.5 * x%*%b)^2 + 0.1*rnorm(n)
MSIR <- msir(x, y)
msir.bic(MSIR, plot = TRUE)
summary(MSIR)
msir.bic(MSIR, type = 3, plot = TRUE)
summary(MSIR)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.