getOutliers: Compute multidimensional outliers on a numeric matrix

Description Usage Arguments Value Examples

View source: R/muod.R

Description

Compute multidimensional outliers on a numeric matrix

Usage

1
2
3
4
getOutliers(data, n = ncol(data), nGroups = n/getOption("mc.cores", 1),
  method = c("rcpp", "classic", "normal", "old"), parClus,
  outl.method = c("deriv.old", "deriv-enh", "deriv", "roc", "tangent"),
  slope = 2, benchmark = c(1, 0, 1), plotCutoff = F)

Arguments

data

A numeric matrix to detect outliers on its columns

method

The method to compute the MUOD indices

outl.method

The method to choose the outliers among the indices

slope

The slope threshold when outl.method = "deriv*"

Value

A list of outliers, namely shape, magnitude, amplitude

Examples

1
2
3
4
5
data(mtcars)

my.data <- as.matrix(mtcars)
outliers <- getOutliers(t(my.data), slope=1)
outliers

luisfo/muod.outliers documentation built on May 21, 2019, 1:19 p.m.