ui_eselect <- sidebarLayout(
position = "left",
sidebarPanel(
titlePanel("NicheToolBox"),
h3("Ellipsoid Model"),
busyIndicator("Computation In progress",
wait = 0),
selectInput("selectShapeS",
"Select a region to train the model",
choices =NULL),
conditionalPanel("input.selectShapeS == 'wWorld'",
selectInput(inputId = "biosEllipS",
"Select variables",
choices = NULL,
multiple = TRUE),
),
conditionalPanel("input.selectShapeS == 'mLayers'",
selectInput(inputId = "biosEllipS",
"Select the variables",
choices = NULL,
multiple = TRUE)
),
uiOutput("esrand"),
uiOutput("filesel"),
checkboxInput("se_mve","Minimum volume ellipsoid",value = T),
conditionalPanel(
"input.se_mve == true",
numericInput("prop_pointsS",
"Proportion of niche points inside the ellipsoid",
value = 0.95,
min = 0.5,max=0.99)
),
selectInput("nvars",
"Select the number of variables to calibrate models",
NULL,multiple=T),
numericInput("bg_number",
"Select number of background points to compute pROC",
value = 10000),
p("Generate environmental backgroud points"),
conditionalPanel("input.selectShapeS == 'mLayers'",
actionButton("run_bgM","Run")
),
conditionalPanel("input.selectShapeS == 'wWorld'",
actionButton("run_bg","Run")
),
numericInput("omr","Omission rate criteria",
value = 0.05,max = 1,min = 0.01),
checkboxInput("eparallel","Run computations in parallel",value = T),
numericInput("ecomp_each","Number of models to run in each job in the parallel computation",
value = 100,max = 10000,min=10),
checkboxInput("eproc",label = "Partial ROC",value = TRUE),
numericInput("prociter","Total number of iterations for the partial ROC bootstrap",
value = 100,max = 500,min=10),
checkboxInput("rseed","Use a random seed",value = T),
p("Run analysis"),
conditionalPanel("input.selectShapeS == 'mLayers'",
actionButton("run_selectionM","Run")
),
conditionalPanel("input.selectShapeS == 'wWorld'",
actionButton("run_selectionW","Run")
),
br(),
downloadButton("downEselection")
),
mainPanel(
DT::dataTableOutput("eselecTable"),
DT::dataTableOutput("env_bgT")
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.