NestedCDpca: NestedCDpca

Description Usage Arguments Value Examples

View source: R/NestedCDpca.R

Description

NestedCDpca performs (sequentially) two clustering and disjoint principal components analysis on the given numeric data matrix and returns a list of results.

Usage

1
2
NestedCDpca(data, method = "CDpca", class, fixAtt, nnloads = 0, Q, P,
  K, ent = 1, tol, maxit, r, stand)

Arguments

data

data frame (numeric).

method

method to apply. CDpca or RCDpca.

class

vector (numeric) or 0, if classes of objects are unknown.

fixAtt

vector (numeric) or 0, for a selection of attributes.

nnloads

1 or 0, for nonnegative loadings

Q

integer, number of clusters of variables.

P

integer, number of clusters of objects.

K

vector (numeric), representing number of sub-clusters.

ent

integer, fuzzifier parameter (default 1).

tol

real number, small positive tolerance.

maxit

integer, maximum of iterations.

r

number of runs of the cdpca algoritm for the final solution.

stand

integer, 1 to standardize data before applying relaxed FKM (0 otherwise).

Value

firstCDpca: CDpca object. secondCDpca: CDpca objects of second run of CDpca.

Examples

1
example = NestedCDpca(data, method, class, fixAtt, nnloads, Q, P, K, ent, tol, maxit, r)

luisrei/new-cdpca documentation built on May 17, 2019, 7:45 a.m.