RelaxedCDpca: RelaxedCDpca

Description Usage Arguments Value Examples

View source: R/RelaxedCDpca.R

Description

RelaxedCDpca performs a relaxed clustering and disjoint principal components analysis on the given numeric data matrix and returns a list of results.

Usage

1
2
RelaxedCDpca(data, class, fixAtt, nnloads = 0, Q, P, ent = 1, tol,
  maxit, r, stand = 0)

Arguments

data

data frame (numeric).

class

vector (numeric) or 0, if classes of objects are unknown.

fixAtt

vector (numeric) or 0, for a selection of attributes.

nnloads

1 or 0, for nonnegative loadings

Q

integer, number of clusters of variables.

P

integer, number of clusters of objects.

ent

integer, fuzzifier parameter (default 1).

tol

real number, small positive tolerance.

maxit

integer, maximum of iterations.

r

number of runs of the cdpca algoritm for the final solution.

stand

integer, 1 to standardize data before applying relaxed FKM (0 otherwise).

Value

iter: iterations used in the best loop for computing the best solution loop: best loop number timebestloop: computation time on the best loop timeallloops: computation time for all loops Y: the component score matrix Ybar: the object centroids matrix in the reduced space A: the component loading matrix U: the partition of objects V: the partition of variables Fobj: function to maximize bcdev: between cluster deviance bcdevTotal: between cluster deviance over the total variability tableclass: cdpca classification pseudocm: pseudo confusion matrix of the real and cdpca classifications Enorm: error norm for the obtained cdpca model

Examples

1
exampleRelaxed = RelaxedCDpca(data, class, fixAtt, nnloads, Q, P, ent, tol, maxit, r)

luisrei/new-cdpca documentation built on May 17, 2019, 7:45 a.m.