library(spacexr)
library(spASE)
Registered S3 method overwritten by 'spASE':
method from
merge.RCTD.objects spacexr
Attaching package: 'spASE'
The following objects are masked from 'package:spacexr':
aggregate_cell_types, build.designmatrix.intercept,
build.designmatrix.nonparam, build.designmatrix.regions,
build.designmatrix.single, choose_sigma_c, convert.old.RCTD,
count_cell_types, create_RCTD_plots, create.RCTD,
create.RCTD.replicates, CSIDE.population.inference,
exvar.celltocell.interactions, exvar.point.density, fitBulk,
fitPixels, get_cell_type_info, get_de_genes, get_doublet_weights,
get_norm_ref, get_standard_errors, import_weights,
make_all_de_plots, make_de_plots_genes, make_de_plots_quant,
make_de_plots_regions, make_de_plots_replicates,
make_de_plots_spatial, normalize_weights, plot_all_cell_types,
plot_class, plot_cond_occur, plot_doub_occur_stack, plot_doublets,
plot_doublets_type, plot_gene_raw, plot_gene_regions,
plot_gene_two_regions, plot_occur_unthreshold,
plot_prediction_gene, plot_puck_continuous, plot_puck_wrapper,
plot_weights, plot_weights_doublet, plot_weights_unthreshold,
process_beads_batch, process_data, read.SpatialRNA,
read.VisiumSpatialRNA, Reference, restrict_counts, restrict_puck,
run.CSIDE, run.CSIDE.general, run.CSIDE.intercept,
run.CSIDE.nonparam, run.CSIDE.regions, run.CSIDE.replicates,
run.CSIDE.single, run.RCTD, run.RCTD.replicates,
save.CSIDE.replicates, set_cell_types_assigned,
set_likelihood_vars, SpatialRNA, write_de_summary
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(Matrix)
library(data.table)
Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':
between, first, last
library(rtracklayer)
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:dplyr':
combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, aperm, append, as.data.frame, basename, cbind,
colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
table, tapply, union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following objects are masked from 'package:data.table':
first, second
The following objects are masked from 'package:Matrix':
expand, unname
The following objects are masked from 'package:dplyr':
first, rename
The following object is masked from 'package:utils':
findMatches
The following objects are masked from 'package:base':
expand.grid, I, unname
Loading required package: IRanges
Attaching package: 'IRanges'
The following object is masked from 'package:data.table':
shift
The following objects are masked from 'package:dplyr':
collapse, desc, slice
Loading required package: GenomeInfoDb
library(tibble)
library(ggplot2)
library(ggthemes)
# Read in gencode to grab xchr genes
gencode <- import('results/gencode.vM10.annotation.gff3.gz')
xchr_genes <- unique(gencode$gene_name[which(seqnames(gencode)=='chrX')])
xchr_genes <- c(xchr_genes, 'Bex3')
hippo1 <- readRDS('results/rctd_hippo_1.rds')
maternal_counts_matrix_hippo <- hippo1@originalSpatialRNA@maternalCounts
paternal_counts_matrix_hippo <- hippo1@originalSpatialRNA@paternalCounts
coords_hippo <- hippo1@originalSpatialRNA@coords |> rownames_to_column()
xgenes <- rownames(maternal_counts_matrix_hippo)[(rownames(maternal_counts_matrix_hippo) %in% xchr_genes) & ((rowSums(maternal_counts_matrix_hippo) + rowSums(paternal_counts_matrix_hippo)) > 1000) & (rowSums(maternal_counts_matrix_hippo)>0 & rowSums(paternal_counts_matrix_hippo)>0)]
myfit_hippo <- spase(maternal_counts_matrix_hippo, paternal_counts_matrix_hippo, coords_hippo,cores=1,verbose=T, df=15, genes = xgenes)
2057 genes pass min threshold of 100 pixels, 500 UMI
running on 25 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|=== | 4%
|
|====== | 8%
|
|======== | 12%
|
|=========== | 16%
|
|============== | 20%
|
|================= | 24%
|
|==================== | 28%
|
|====================== | 32%
|
|========================= | 36%
|
|============================ | 40%
|
|=============================== | 44%
|
|================================== | 48%
|
|==================================== | 52%
|
|======================================= | 56%
|
|========================================== | 60%
|
|============================================= | 64%
|
|================================================ | 68%
|
|================================================== | 72%
|
|===================================================== | 76%
|
|======================================================== | 80%
|
|=========================================================== | 84%
|
|============================================================== | 88%
|
|================================================================ | 92%
|
|=================================================================== | 96%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_hippo,
matrix2 = paternal_counts_matrix_hippo,
covariates = coords_hippo,
spasefit = myfit_hippo,
coords = coords_hippo |> select(x,y) |> sample_n(10000),
genes = xgenes,
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_hippo1'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Arhgef9"
saved figures/08_xchr_hippo1-raw-Arhgef9.png
saved figures/08_xchr_hippo1-smooth-Arhgef9.png
saved figures/08_xchr_hippo1-zscore-Arhgef9.png
saved figures/08_xchr_hippo1-x1-Arhgef9.png
saved figures/08_xchr_hippo1-x2-Arhgef9.png
[1] "Atrx"
saved figures/08_xchr_hippo1-raw-Atrx.png
saved figures/08_xchr_hippo1-smooth-Atrx.png
saved figures/08_xchr_hippo1-zscore-Atrx.png
saved figures/08_xchr_hippo1-x1-Atrx.png
saved figures/08_xchr_hippo1-x2-Atrx.png
[1] "Bex2"
saved figures/08_xchr_hippo1-raw-Bex2.png
saved figures/08_xchr_hippo1-smooth-Bex2.png
saved figures/08_xchr_hippo1-zscore-Bex2.png
saved figures/08_xchr_hippo1-x1-Bex2.png
saved figures/08_xchr_hippo1-x2-Bex2.png
[1] "Cdr1"
saved figures/08_xchr_hippo1-raw-Cdr1.png
saved figures/08_xchr_hippo1-smooth-Cdr1.png
saved figures/08_xchr_hippo1-zscore-Cdr1.png
saved figures/08_xchr_hippo1-x1-Cdr1.png
saved figures/08_xchr_hippo1-x2-Cdr1.png
[1] "Gnl3l"
saved figures/08_xchr_hippo1-raw-Gnl3l.png
saved figures/08_xchr_hippo1-smooth-Gnl3l.png
saved figures/08_xchr_hippo1-zscore-Gnl3l.png
saved figures/08_xchr_hippo1-x1-Gnl3l.png
saved figures/08_xchr_hippo1-x2-Gnl3l.png
[1] "Gpm6b"
saved figures/08_xchr_hippo1-raw-Gpm6b.png
saved figures/08_xchr_hippo1-smooth-Gpm6b.png
saved figures/08_xchr_hippo1-zscore-Gpm6b.png
saved figures/08_xchr_hippo1-x1-Gpm6b.png
saved figures/08_xchr_hippo1-x2-Gpm6b.png
[1] "Gprasp1"
saved figures/08_xchr_hippo1-raw-Gprasp1.png
saved figures/08_xchr_hippo1-smooth-Gprasp1.png
saved figures/08_xchr_hippo1-zscore-Gprasp1.png
saved figures/08_xchr_hippo1-x1-Gprasp1.png
saved figures/08_xchr_hippo1-x2-Gprasp1.png
[1] "Hprt"
saved figures/08_xchr_hippo1-raw-Hprt.png
saved figures/08_xchr_hippo1-smooth-Hprt.png
saved figures/08_xchr_hippo1-zscore-Hprt.png
saved figures/08_xchr_hippo1-x1-Hprt.png
saved figures/08_xchr_hippo1-x2-Hprt.png
[1] "Idh3g"
saved figures/08_xchr_hippo1-raw-Idh3g.png
saved figures/08_xchr_hippo1-smooth-Idh3g.png
saved figures/08_xchr_hippo1-zscore-Idh3g.png
saved figures/08_xchr_hippo1-x1-Idh3g.png
saved figures/08_xchr_hippo1-x2-Idh3g.png
[1] "Ids"
saved figures/08_xchr_hippo1-raw-Ids.png
saved figures/08_xchr_hippo1-smooth-Ids.png
saved figures/08_xchr_hippo1-zscore-Ids.png
saved figures/08_xchr_hippo1-x1-Ids.png
saved figures/08_xchr_hippo1-x2-Ids.png
[1] "Maged1"
saved figures/08_xchr_hippo1-raw-Maged1.png
saved figures/08_xchr_hippo1-smooth-Maged1.png
saved figures/08_xchr_hippo1-zscore-Maged1.png
saved figures/08_xchr_hippo1-x1-Maged1.png
saved figures/08_xchr_hippo1-x2-Maged1.png
[1] "Magee1"
saved figures/08_xchr_hippo1-raw-Magee1.png
saved figures/08_xchr_hippo1-smooth-Magee1.png
saved figures/08_xchr_hippo1-zscore-Magee1.png
saved figures/08_xchr_hippo1-x1-Magee1.png
saved figures/08_xchr_hippo1-x2-Magee1.png
[1] "Map7d2"
saved figures/08_xchr_hippo1-raw-Map7d2.png
saved figures/08_xchr_hippo1-smooth-Map7d2.png
saved figures/08_xchr_hippo1-zscore-Map7d2.png
saved figures/08_xchr_hippo1-x1-Map7d2.png
saved figures/08_xchr_hippo1-x2-Map7d2.png
[1] "Morf4l2"
saved figures/08_xchr_hippo1-raw-Morf4l2.png
saved figures/08_xchr_hippo1-smooth-Morf4l2.png
saved figures/08_xchr_hippo1-zscore-Morf4l2.png
saved figures/08_xchr_hippo1-x1-Morf4l2.png
saved figures/08_xchr_hippo1-x2-Morf4l2.png
[1] "Ndufb11"
saved figures/08_xchr_hippo1-raw-Ndufb11.png
saved figures/08_xchr_hippo1-smooth-Ndufb11.png
saved figures/08_xchr_hippo1-zscore-Ndufb11.png
saved figures/08_xchr_hippo1-x1-Ndufb11.png
saved figures/08_xchr_hippo1-x2-Ndufb11.png
[1] "Pcsk1n"
saved figures/08_xchr_hippo1-raw-Pcsk1n.png
saved figures/08_xchr_hippo1-smooth-Pcsk1n.png
saved figures/08_xchr_hippo1-zscore-Pcsk1n.png
saved figures/08_xchr_hippo1-x1-Pcsk1n.png
saved figures/08_xchr_hippo1-x2-Pcsk1n.png
[1] "Plp1"
saved figures/08_xchr_hippo1-raw-Plp1.png
saved figures/08_xchr_hippo1-smooth-Plp1.png
saved figures/08_xchr_hippo1-zscore-Plp1.png
saved figures/08_xchr_hippo1-x1-Plp1.png
saved figures/08_xchr_hippo1-x2-Plp1.png
[1] "Rps4x"
saved figures/08_xchr_hippo1-raw-Rps4x.png
saved figures/08_xchr_hippo1-smooth-Rps4x.png
saved figures/08_xchr_hippo1-zscore-Rps4x.png
saved figures/08_xchr_hippo1-x1-Rps4x.png
saved figures/08_xchr_hippo1-x2-Rps4x.png
[1] "Tceal3"
saved figures/08_xchr_hippo1-raw-Tceal3.png
saved figures/08_xchr_hippo1-smooth-Tceal3.png
saved figures/08_xchr_hippo1-zscore-Tceal3.png
saved figures/08_xchr_hippo1-x1-Tceal3.png
saved figures/08_xchr_hippo1-x2-Tceal3.png
[1] "Tceal5"
saved figures/08_xchr_hippo1-raw-Tceal5.png
saved figures/08_xchr_hippo1-smooth-Tceal5.png
saved figures/08_xchr_hippo1-zscore-Tceal5.png
saved figures/08_xchr_hippo1-x1-Tceal5.png
saved figures/08_xchr_hippo1-x2-Tceal5.png
[1] "Tceal6"
saved figures/08_xchr_hippo1-raw-Tceal6.png
saved figures/08_xchr_hippo1-smooth-Tceal6.png
saved figures/08_xchr_hippo1-zscore-Tceal6.png
saved figures/08_xchr_hippo1-x1-Tceal6.png
saved figures/08_xchr_hippo1-x2-Tceal6.png
[1] "Tspan7"
saved figures/08_xchr_hippo1-raw-Tspan7.png
saved figures/08_xchr_hippo1-smooth-Tspan7.png
saved figures/08_xchr_hippo1-zscore-Tspan7.png
saved figures/08_xchr_hippo1-x1-Tspan7.png
saved figures/08_xchr_hippo1-x2-Tspan7.png
[1] "Uba1"
saved figures/08_xchr_hippo1-raw-Uba1.png
saved figures/08_xchr_hippo1-smooth-Uba1.png
saved figures/08_xchr_hippo1-zscore-Uba1.png
saved figures/08_xchr_hippo1-x1-Uba1.png
saved figures/08_xchr_hippo1-x2-Uba1.png
[1] "Usp11"
saved figures/08_xchr_hippo1-raw-Usp11.png
saved figures/08_xchr_hippo1-smooth-Usp11.png
saved figures/08_xchr_hippo1-zscore-Usp11.png
saved figures/08_xchr_hippo1-x1-Usp11.png
saved figures/08_xchr_hippo1-x2-Usp11.png
[1] "Wdr13"
saved figures/08_xchr_hippo1-raw-Wdr13.png
saved figures/08_xchr_hippo1-smooth-Wdr13.png
saved figures/08_xchr_hippo1-zscore-Wdr13.png
saved figures/08_xchr_hippo1-x1-Wdr13.png
saved figures/08_xchr_hippo1-x2-Wdr13.png
hippo2 <- readRDS('results/rctd_hippo_2.rds')
maternal_counts_matrix_hippo <- hippo2@originalSpatialRNA@maternalCounts
paternal_counts_matrix_hippo <- hippo2@originalSpatialRNA@paternalCounts
coords_hippo <- hippo2@originalSpatialRNA@coords |> rownames_to_column()
xgenes <- rownames(maternal_counts_matrix_hippo)[(rownames(maternal_counts_matrix_hippo) %in% xchr_genes) & ((rowSums(maternal_counts_matrix_hippo) + rowSums(paternal_counts_matrix_hippo)) > 1000) & (rowSums(maternal_counts_matrix_hippo)>0 & rowSums(paternal_counts_matrix_hippo)>0)]
xgenes <- c(xgenes, 'Morf4l2', 'Tceal5', 'Tceal6')
myfit_hippo <- spase(maternal_counts_matrix_hippo, paternal_counts_matrix_hippo, coords_hippo,cores=1,verbose=T, df=15, genes = xgenes, min.umi=100)
3129 genes pass min threshold of 100 pixels, 100 UMI
running on 8 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|========= | 12%
|
|================== | 25%
|
|========================== | 38%
|
|=================================== | 50%
|
|============================================ | 62%
|
|==================================================== | 75%
|
|============================================================= | 88%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_hippo,
matrix2 = paternal_counts_matrix_hippo,
covariates = coords_hippo,
spasefit = myfit_hippo,
coords = coords_hippo |> select(x,y) |> sample_n(10000),
genes = xgenes,
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_hippo2'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Ndufb11"
saved figures/08_xchr_hippo2-raw-Ndufb11.png
saved figures/08_xchr_hippo2-smooth-Ndufb11.png
saved figures/08_xchr_hippo2-zscore-Ndufb11.png
saved figures/08_xchr_hippo2-x1-Ndufb11.png
saved figures/08_xchr_hippo2-x2-Ndufb11.png
[1] "Plp1"
saved figures/08_xchr_hippo2-raw-Plp1.png
saved figures/08_xchr_hippo2-smooth-Plp1.png
saved figures/08_xchr_hippo2-zscore-Plp1.png
saved figures/08_xchr_hippo2-x1-Plp1.png
saved figures/08_xchr_hippo2-x2-Plp1.png
[1] "Syp"
saved figures/08_xchr_hippo2-raw-Syp.png
saved figures/08_xchr_hippo2-smooth-Syp.png
saved figures/08_xchr_hippo2-zscore-Syp.png
saved figures/08_xchr_hippo2-x1-Syp.png
saved figures/08_xchr_hippo2-x2-Syp.png
[1] "Tspan7"
saved figures/08_xchr_hippo2-raw-Tspan7.png
saved figures/08_xchr_hippo2-smooth-Tspan7.png
saved figures/08_xchr_hippo2-zscore-Tspan7.png
saved figures/08_xchr_hippo2-x1-Tspan7.png
saved figures/08_xchr_hippo2-x2-Tspan7.png
[1] "Uba1"
saved figures/08_xchr_hippo2-raw-Uba1.png
saved figures/08_xchr_hippo2-smooth-Uba1.png
saved figures/08_xchr_hippo2-zscore-Uba1.png
saved figures/08_xchr_hippo2-x1-Uba1.png
saved figures/08_xchr_hippo2-x2-Uba1.png
[1] "Morf4l2"
Warning in plotSpase(matrix1 = maternal_counts_matrix_hippo, matrix2 =
paternal_counts_matrix_hippo, : Morf4l2 did not converge; try lowering degrees
of freedom. skipping for now
[1] "Tceal5"
saved figures/08_xchr_hippo2-raw-Tceal5.png
saved figures/08_xchr_hippo2-smooth-Tceal5.png
saved figures/08_xchr_hippo2-zscore-Tceal5.png
saved figures/08_xchr_hippo2-x1-Tceal5.png
saved figures/08_xchr_hippo2-x2-Tceal5.png
[1] "Tceal6"
saved figures/08_xchr_hippo2-raw-Tceal6.png
saved figures/08_xchr_hippo2-smooth-Tceal6.png
saved figures/08_xchr_hippo2-zscore-Tceal6.png
saved figures/08_xchr_hippo2-x1-Tceal6.png
saved figures/08_xchr_hippo2-x2-Tceal6.png
Smooth Morf4l2 with lower df to be able to compare to hippo1
myfit_hippo <- spase(maternal_counts_matrix_hippo, paternal_counts_matrix_hippo, coords_hippo,cores=1,verbose=T, df=5, genes = 'Morf4l2', min.umi=100)
3129 genes pass min threshold of 100 pixels, 100 UMI
running on 1 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_hippo,
matrix2 = paternal_counts_matrix_hippo,
covariates = coords_hippo,
spasefit = myfit_hippo,
coords = coords_hippo |> select(x,y) |> sample_n(10000),
genes = 'Morf4l2',
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_hippo2'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Morf4l2"
saved figures/08_xchr_hippo2-raw-Morf4l2.png
saved figures/08_xchr_hippo2-smooth-Morf4l2.png
saved figures/08_xchr_hippo2-zscore-Morf4l2.png
saved figures/08_xchr_hippo2-x1-Morf4l2.png
saved figures/08_xchr_hippo2-x2-Morf4l2.png
hippo3 <- readRDS('results/rctd_hippo_3.rds')
maternal_counts_matrix_hippo <- hippo3@originalSpatialRNA@maternalCounts
paternal_counts_matrix_hippo <- hippo3@originalSpatialRNA@paternalCounts
coords_hippo <- hippo3@originalSpatialRNA@coords |> rownames_to_column()
xgenes <- rownames(maternal_counts_matrix_hippo)[(rownames(maternal_counts_matrix_hippo) %in% xchr_genes) & ((rowSums(maternal_counts_matrix_hippo) + rowSums(paternal_counts_matrix_hippo)) > 1000) & (rowSums(maternal_counts_matrix_hippo)>0 & rowSums(paternal_counts_matrix_hippo)>0)]
myfit_hippo <- spase(maternal_counts_matrix_hippo, paternal_counts_matrix_hippo, coords_hippo,cores=1,verbose=T, df=15, genes = c('Arhgef9', 'Bex3', 'Cdkl5', 'Sat1', 'Syp', 'Tceal5'), min.umi=100) # subset to the ones i'm actually going to include in the supplemental figure; the rest are pretty much all maternal
8922 genes pass min threshold of 100 pixels, 100 UMI
running on 6 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|============ | 17%
|
|======================= | 33%
|
|=================================== | 50%
|
|=============================================== | 67%
|
|========================================================== | 83%
|
|======================================================================| 100%
set.seed(5)
common_coords <- coords_hippo |> select(x,y) |> sample_n(10000)
plotSpase(
matrix1 = maternal_counts_matrix_hippo,
matrix2 = paternal_counts_matrix_hippo,
covariates = coords_hippo,
spasefit = myfit_hippo,
coords = common_coords,
genes = c('Arhgef9', 'Bex3', 'Cdkl5', 'Sat1', 'Syp', 'Tceal5'),
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_hippo3'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Arhgef9"
saved figures/08_xchr_hippo3-raw-Arhgef9.png
saved figures/08_xchr_hippo3-smooth-Arhgef9.png
saved figures/08_xchr_hippo3-zscore-Arhgef9.png
saved figures/08_xchr_hippo3-x1-Arhgef9.png
saved figures/08_xchr_hippo3-x2-Arhgef9.png
[1] "Bex3"
saved figures/08_xchr_hippo3-raw-Bex3.png
saved figures/08_xchr_hippo3-smooth-Bex3.png
saved figures/08_xchr_hippo3-zscore-Bex3.png
saved figures/08_xchr_hippo3-x1-Bex3.png
saved figures/08_xchr_hippo3-x2-Bex3.png
[1] "Cdkl5"
saved figures/08_xchr_hippo3-raw-Cdkl5.png
saved figures/08_xchr_hippo3-smooth-Cdkl5.png
saved figures/08_xchr_hippo3-zscore-Cdkl5.png
saved figures/08_xchr_hippo3-x1-Cdkl5.png
saved figures/08_xchr_hippo3-x2-Cdkl5.png
[1] "Sat1"
saved figures/08_xchr_hippo3-raw-Sat1.png
saved figures/08_xchr_hippo3-smooth-Sat1.png
saved figures/08_xchr_hippo3-zscore-Sat1.png
saved figures/08_xchr_hippo3-x1-Sat1.png
saved figures/08_xchr_hippo3-x2-Sat1.png
[1] "Syp"
saved figures/08_xchr_hippo3-raw-Syp.png
saved figures/08_xchr_hippo3-smooth-Syp.png
saved figures/08_xchr_hippo3-zscore-Syp.png
saved figures/08_xchr_hippo3-x1-Syp.png
saved figures/08_xchr_hippo3-x2-Syp.png
[1] "Tceal5"
saved figures/08_xchr_hippo3-raw-Tceal5.png
saved figures/08_xchr_hippo3-smooth-Tceal5.png
saved figures/08_xchr_hippo3-zscore-Tceal5.png
saved figures/08_xchr_hippo3-x1-Tceal5.png
saved figures/08_xchr_hippo3-x2-Tceal5.png
Extra genes for comparison to other samples
myfit_hippo <- spase(maternal_counts_matrix_hippo, paternal_counts_matrix_hippo, coords_hippo,cores=1,verbose=T, df=5, genes = c('Tceal3','Tceal6','Morf4l2'), min.umi=100)
8922 genes pass min threshold of 100 pixels, 100 UMI
running on 3 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|======================= | 33%
|
|=============================================== | 67%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_hippo,
matrix2 = paternal_counts_matrix_hippo,
covariates = coords_hippo,
spasefit = myfit_hippo,
coords = common_coords,
genes = c('Tceal3','Tceal6','Morf4l2'),
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_hippo3'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Tceal3"
saved figures/08_xchr_hippo3-raw-Tceal3.png
saved figures/08_xchr_hippo3-smooth-Tceal3.png
saved figures/08_xchr_hippo3-zscore-Tceal3.png
saved figures/08_xchr_hippo3-x1-Tceal3.png
saved figures/08_xchr_hippo3-x2-Tceal3.png
[1] "Tceal6"
saved figures/08_xchr_hippo3-raw-Tceal6.png
saved figures/08_xchr_hippo3-smooth-Tceal6.png
saved figures/08_xchr_hippo3-zscore-Tceal6.png
saved figures/08_xchr_hippo3-x1-Tceal6.png
saved figures/08_xchr_hippo3-x2-Tceal6.png
[1] "Morf4l2"
saved figures/08_xchr_hippo3-raw-Morf4l2.png
saved figures/08_xchr_hippo3-smooth-Morf4l2.png
saved figures/08_xchr_hippo3-zscore-Morf4l2.png
saved figures/08_xchr_hippo3-x1-Morf4l2.png
saved figures/08_xchr_hippo3-x2-Morf4l2.png
cere3 <- readRDS('results/rctd_cere_3.rds')
maternal_counts_matrix_cere <- cere3@originalSpatialRNA@maternalCounts
paternal_counts_matrix_cere <- cere3@originalSpatialRNA@paternalCounts
coords_cere <- cere3@originalSpatialRNA@coords |> rownames_to_column()
xgenes <- rownames(maternal_counts_matrix_cere)[(rownames(maternal_counts_matrix_cere) %in% xchr_genes) & ((rowSums(maternal_counts_matrix_cere) + rowSums(paternal_counts_matrix_cere)) > 1000) & (rowSums(maternal_counts_matrix_cere)>0 & rowSums(paternal_counts_matrix_cere)>0)]
myfit_cere <- spase(maternal_counts_matrix_cere, paternal_counts_matrix_cere, coords_cere,cores=1,verbose=T, df=15, genes = xgenes)
4506 genes pass min threshold of 100 pixels, 500 UMI
running on 55 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|= | 2%
|
|=== | 4%
|
|==== | 5%
|
|===== | 7%
|
|====== | 9%
|
|======== | 11%
|
|========= | 13%
|
|========== | 15%
|
|=========== | 16%
|
|============= | 18%
|
|============== | 20%
|
|=============== | 22%
|
|================= | 24%
|
|================== | 25%
|
|=================== | 27%
|
|==================== | 29%
|
|====================== | 31%
|
|======================= | 33%
|
|======================== | 35%
|
|========================= | 36%
|
|=========================== | 38%
|
|============================ | 40%
|
|============================= | 42%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================= | 47%
|
|================================== | 49%
|
|==================================== | 51%
|
|===================================== | 53%
|
|====================================== | 55%
|
|======================================= | 56%
|
|========================================= | 58%
|
|========================================== | 60%
|
|=========================================== | 62%
|
|============================================= | 64%
|
|============================================== | 65%
|
|=============================================== | 67%
|
|================================================ | 69%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|======================================================= | 78%
|
|======================================================== | 80%
|
|========================================================= | 82%
|
|=========================================================== | 84%
|
|============================================================ | 85%
|
|============================================================= | 87%
|
|============================================================== | 89%
|
|================================================================ | 91%
|
|================================================================= | 93%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|===================================================================== | 98%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_cere,
matrix2 = paternal_counts_matrix_cere,
covariates = coords_cere,
spasefit = myfit_cere,
coords = coords_cere |> select(x,y) |> sample_n(10000),
genes = xgenes,
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_cere3'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Araf"
saved figures/08_xchr_cere3-raw-Araf.png
saved figures/08_xchr_cere3-smooth-Araf.png
saved figures/08_xchr_cere3-zscore-Araf.png
saved figures/08_xchr_cere3-x1-Araf.png
saved figures/08_xchr_cere3-x2-Araf.png
[1] "Arhgef9"
saved figures/08_xchr_cere3-raw-Arhgef9.png
saved figures/08_xchr_cere3-smooth-Arhgef9.png
saved figures/08_xchr_cere3-zscore-Arhgef9.png
saved figures/08_xchr_cere3-x1-Arhgef9.png
saved figures/08_xchr_cere3-x2-Arhgef9.png
[1] "Armcx1"
saved figures/08_xchr_cere3-raw-Armcx1.png
saved figures/08_xchr_cere3-smooth-Armcx1.png
saved figures/08_xchr_cere3-zscore-Armcx1.png
saved figures/08_xchr_cere3-x1-Armcx1.png
saved figures/08_xchr_cere3-x2-Armcx1.png
[1] "Armcx3"
saved figures/08_xchr_cere3-raw-Armcx3.png
saved figures/08_xchr_cere3-smooth-Armcx3.png
saved figures/08_xchr_cere3-zscore-Armcx3.png
saved figures/08_xchr_cere3-x1-Armcx3.png
saved figures/08_xchr_cere3-x2-Armcx3.png
[1] "Arxes1"
saved figures/08_xchr_cere3-raw-Arxes1.png
saved figures/08_xchr_cere3-smooth-Arxes1.png
saved figures/08_xchr_cere3-zscore-Arxes1.png
saved figures/08_xchr_cere3-x1-Arxes1.png
saved figures/08_xchr_cere3-x2-Arxes1.png
[1] "Atrx"
saved figures/08_xchr_cere3-raw-Atrx.png
saved figures/08_xchr_cere3-smooth-Atrx.png
saved figures/08_xchr_cere3-zscore-Atrx.png
saved figures/08_xchr_cere3-x1-Atrx.png
saved figures/08_xchr_cere3-x2-Atrx.png
[1] "Bex2"
saved figures/08_xchr_cere3-raw-Bex2.png
saved figures/08_xchr_cere3-smooth-Bex2.png
saved figures/08_xchr_cere3-zscore-Bex2.png
saved figures/08_xchr_cere3-x1-Bex2.png
saved figures/08_xchr_cere3-x2-Bex2.png
[1] "Bex3"
saved figures/08_xchr_cere3-raw-Bex3.png
saved figures/08_xchr_cere3-smooth-Bex3.png
saved figures/08_xchr_cere3-zscore-Bex3.png
saved figures/08_xchr_cere3-x1-Bex3.png
saved figures/08_xchr_cere3-x2-Bex3.png
[1] "Cdk16"
saved figures/08_xchr_cere3-raw-Cdk16.png
saved figures/08_xchr_cere3-smooth-Cdk16.png
saved figures/08_xchr_cere3-zscore-Cdk16.png
saved figures/08_xchr_cere3-x1-Cdk16.png
saved figures/08_xchr_cere3-x2-Cdk16.png
[1] "Cdr1"
saved figures/08_xchr_cere3-raw-Cdr1.png
saved figures/08_xchr_cere3-smooth-Cdr1.png
saved figures/08_xchr_cere3-zscore-Cdr1.png
saved figures/08_xchr_cere3-x1-Cdr1.png
saved figures/08_xchr_cere3-x2-Cdr1.png
[1] "Cnksr2"
saved figures/08_xchr_cere3-raw-Cnksr2.png
saved figures/08_xchr_cere3-smooth-Cnksr2.png
saved figures/08_xchr_cere3-zscore-Cnksr2.png
saved figures/08_xchr_cere3-x1-Cnksr2.png
saved figures/08_xchr_cere3-x2-Cnksr2.png
[1] "Ctps2"
saved figures/08_xchr_cere3-raw-Ctps2.png
saved figures/08_xchr_cere3-smooth-Ctps2.png
saved figures/08_xchr_cere3-zscore-Ctps2.png
saved figures/08_xchr_cere3-x1-Ctps2.png
saved figures/08_xchr_cere3-x2-Ctps2.png
[1] "Dkc1"
saved figures/08_xchr_cere3-raw-Dkc1.png
saved figures/08_xchr_cere3-smooth-Dkc1.png
saved figures/08_xchr_cere3-zscore-Dkc1.png
saved figures/08_xchr_cere3-x1-Dkc1.png
saved figures/08_xchr_cere3-x2-Dkc1.png
[1] "Eif1ax"
saved figures/08_xchr_cere3-raw-Eif1ax.png
saved figures/08_xchr_cere3-smooth-Eif1ax.png
saved figures/08_xchr_cere3-zscore-Eif1ax.png
saved figures/08_xchr_cere3-x1-Eif1ax.png
saved figures/08_xchr_cere3-x2-Eif1ax.png
[1] "Fundc2"
saved figures/08_xchr_cere3-raw-Fundc2.png
saved figures/08_xchr_cere3-smooth-Fundc2.png
saved figures/08_xchr_cere3-zscore-Fundc2.png
saved figures/08_xchr_cere3-x1-Fundc2.png
saved figures/08_xchr_cere3-x2-Fundc2.png
[1] "Gnl3l"
saved figures/08_xchr_cere3-raw-Gnl3l.png
saved figures/08_xchr_cere3-smooth-Gnl3l.png
saved figures/08_xchr_cere3-zscore-Gnl3l.png
saved figures/08_xchr_cere3-x1-Gnl3l.png
saved figures/08_xchr_cere3-x2-Gnl3l.png
[1] "Gpm6b"
saved figures/08_xchr_cere3-raw-Gpm6b.png
saved figures/08_xchr_cere3-smooth-Gpm6b.png
saved figures/08_xchr_cere3-zscore-Gpm6b.png
saved figures/08_xchr_cere3-x1-Gpm6b.png
saved figures/08_xchr_cere3-x2-Gpm6b.png
[1] "Gprasp1"
saved figures/08_xchr_cere3-raw-Gprasp1.png
saved figures/08_xchr_cere3-smooth-Gprasp1.png
saved figures/08_xchr_cere3-zscore-Gprasp1.png
saved figures/08_xchr_cere3-x1-Gprasp1.png
saved figures/08_xchr_cere3-x2-Gprasp1.png
[1] "Hprt"
saved figures/08_xchr_cere3-raw-Hprt.png
saved figures/08_xchr_cere3-smooth-Hprt.png
saved figures/08_xchr_cere3-zscore-Hprt.png
saved figures/08_xchr_cere3-x1-Hprt.png
saved figures/08_xchr_cere3-x2-Hprt.png
[1] "Hsd17b10"
saved figures/08_xchr_cere3-raw-Hsd17b10.png
saved figures/08_xchr_cere3-smooth-Hsd17b10.png
saved figures/08_xchr_cere3-zscore-Hsd17b10.png
saved figures/08_xchr_cere3-x1-Hsd17b10.png
saved figures/08_xchr_cere3-x2-Hsd17b10.png
[1] "Htatsf1"
saved figures/08_xchr_cere3-raw-Htatsf1.png
saved figures/08_xchr_cere3-smooth-Htatsf1.png
saved figures/08_xchr_cere3-zscore-Htatsf1.png
saved figures/08_xchr_cere3-x1-Htatsf1.png
saved figures/08_xchr_cere3-x2-Htatsf1.png
[1] "Idh3g"
saved figures/08_xchr_cere3-raw-Idh3g.png
saved figures/08_xchr_cere3-smooth-Idh3g.png
saved figures/08_xchr_cere3-zscore-Idh3g.png
saved figures/08_xchr_cere3-x1-Idh3g.png
saved figures/08_xchr_cere3-x2-Idh3g.png
[1] "Ids"
saved figures/08_xchr_cere3-raw-Ids.png
saved figures/08_xchr_cere3-smooth-Ids.png
saved figures/08_xchr_cere3-zscore-Ids.png
saved figures/08_xchr_cere3-x1-Ids.png
saved figures/08_xchr_cere3-x2-Ids.png
[1] "Irak1"
saved figures/08_xchr_cere3-raw-Irak1.png
saved figures/08_xchr_cere3-smooth-Irak1.png
saved figures/08_xchr_cere3-zscore-Irak1.png
saved figures/08_xchr_cere3-x1-Irak1.png
saved figures/08_xchr_cere3-x2-Irak1.png
[1] "Maged1"
saved figures/08_xchr_cere3-raw-Maged1.png
saved figures/08_xchr_cere3-smooth-Maged1.png
saved figures/08_xchr_cere3-zscore-Maged1.png
saved figures/08_xchr_cere3-x1-Maged1.png
saved figures/08_xchr_cere3-x2-Maged1.png
[1] "Mageh1"
saved figures/08_xchr_cere3-raw-Mageh1.png
saved figures/08_xchr_cere3-smooth-Mageh1.png
saved figures/08_xchr_cere3-zscore-Mageh1.png
saved figures/08_xchr_cere3-x1-Mageh1.png
saved figures/08_xchr_cere3-x2-Mageh1.png
[1] "Map7d2"
saved figures/08_xchr_cere3-raw-Map7d2.png
saved figures/08_xchr_cere3-smooth-Map7d2.png
saved figures/08_xchr_cere3-zscore-Map7d2.png
saved figures/08_xchr_cere3-x1-Map7d2.png
saved figures/08_xchr_cere3-x2-Map7d2.png
[1] "Mcts1"
saved figures/08_xchr_cere3-raw-Mcts1.png
saved figures/08_xchr_cere3-smooth-Mcts1.png
saved figures/08_xchr_cere3-zscore-Mcts1.png
saved figures/08_xchr_cere3-x1-Mcts1.png
saved figures/08_xchr_cere3-x2-Mcts1.png
[1] "Ndufb11"
saved figures/08_xchr_cere3-raw-Ndufb11.png
saved figures/08_xchr_cere3-smooth-Ndufb11.png
saved figures/08_xchr_cere3-zscore-Ndufb11.png
saved figures/08_xchr_cere3-x1-Ndufb11.png
saved figures/08_xchr_cere3-x2-Ndufb11.png
[1] "Ogt"
saved figures/08_xchr_cere3-raw-Ogt.png
saved figures/08_xchr_cere3-smooth-Ogt.png
saved figures/08_xchr_cere3-zscore-Ogt.png
saved figures/08_xchr_cere3-x1-Ogt.png
saved figures/08_xchr_cere3-x2-Ogt.png
[1] "Pcsk1n"
saved figures/08_xchr_cere3-raw-Pcsk1n.png
saved figures/08_xchr_cere3-smooth-Pcsk1n.png
saved figures/08_xchr_cere3-zscore-Pcsk1n.png
saved figures/08_xchr_cere3-x1-Pcsk1n.png
saved figures/08_xchr_cere3-x2-Pcsk1n.png
[1] "Pdzd4"
saved figures/08_xchr_cere3-raw-Pdzd4.png
saved figures/08_xchr_cere3-smooth-Pdzd4.png
saved figures/08_xchr_cere3-zscore-Pdzd4.png
saved figures/08_xchr_cere3-x1-Pdzd4.png
saved figures/08_xchr_cere3-x2-Pdzd4.png
[1] "Pgrmc1"
saved figures/08_xchr_cere3-raw-Pgrmc1.png
saved figures/08_xchr_cere3-smooth-Pgrmc1.png
saved figures/08_xchr_cere3-zscore-Pgrmc1.png
saved figures/08_xchr_cere3-x1-Pgrmc1.png
saved figures/08_xchr_cere3-x2-Pgrmc1.png
[1] "Pja1"
saved figures/08_xchr_cere3-raw-Pja1.png
saved figures/08_xchr_cere3-smooth-Pja1.png
saved figures/08_xchr_cere3-zscore-Pja1.png
saved figures/08_xchr_cere3-x1-Pja1.png
saved figures/08_xchr_cere3-x2-Pja1.png
[1] "Plp1"
saved figures/08_xchr_cere3-raw-Plp1.png
saved figures/08_xchr_cere3-smooth-Plp1.png
saved figures/08_xchr_cere3-zscore-Plp1.png
saved figures/08_xchr_cere3-x1-Plp1.png
saved figures/08_xchr_cere3-x2-Plp1.png
[1] "Prps1"
saved figures/08_xchr_cere3-raw-Prps1.png
saved figures/08_xchr_cere3-smooth-Prps1.png
saved figures/08_xchr_cere3-zscore-Prps1.png
saved figures/08_xchr_cere3-x1-Prps1.png
saved figures/08_xchr_cere3-x2-Prps1.png
[1] "Rps4x"
saved figures/08_xchr_cere3-raw-Rps4x.png
saved figures/08_xchr_cere3-smooth-Rps4x.png
saved figures/08_xchr_cere3-zscore-Rps4x.png
saved figures/08_xchr_cere3-x1-Rps4x.png
saved figures/08_xchr_cere3-x2-Rps4x.png
[1] "Sat1"
saved figures/08_xchr_cere3-raw-Sat1.png
saved figures/08_xchr_cere3-smooth-Sat1.png
saved figures/08_xchr_cere3-zscore-Sat1.png
saved figures/08_xchr_cere3-x1-Sat1.png
saved figures/08_xchr_cere3-x2-Sat1.png
[1] "Sh3bgrl"
saved figures/08_xchr_cere3-raw-Sh3bgrl.png
saved figures/08_xchr_cere3-smooth-Sh3bgrl.png
saved figures/08_xchr_cere3-zscore-Sh3bgrl.png
saved figures/08_xchr_cere3-x1-Sh3bgrl.png
saved figures/08_xchr_cere3-x2-Sh3bgrl.png
[1] "Slc25a14"
saved figures/08_xchr_cere3-raw-Slc25a14.png
saved figures/08_xchr_cere3-smooth-Slc25a14.png
saved figures/08_xchr_cere3-zscore-Slc25a14.png
saved figures/08_xchr_cere3-x1-Slc25a14.png
saved figures/08_xchr_cere3-x2-Slc25a14.png
[1] "Slc6a8"
saved figures/08_xchr_cere3-raw-Slc6a8.png
saved figures/08_xchr_cere3-smooth-Slc6a8.png
saved figures/08_xchr_cere3-zscore-Slc6a8.png
saved figures/08_xchr_cere3-x1-Slc6a8.png
saved figures/08_xchr_cere3-x2-Slc6a8.png
[1] "Sms"
saved figures/08_xchr_cere3-raw-Sms.png
saved figures/08_xchr_cere3-smooth-Sms.png
saved figures/08_xchr_cere3-zscore-Sms.png
saved figures/08_xchr_cere3-x1-Sms.png
saved figures/08_xchr_cere3-x2-Sms.png
[1] "Syp"
saved figures/08_xchr_cere3-raw-Syp.png
saved figures/08_xchr_cere3-smooth-Syp.png
saved figures/08_xchr_cere3-zscore-Syp.png
saved figures/08_xchr_cere3-x1-Syp.png
saved figures/08_xchr_cere3-x2-Syp.png
[1] "Tceal3"
saved figures/08_xchr_cere3-raw-Tceal3.png
saved figures/08_xchr_cere3-smooth-Tceal3.png
saved figures/08_xchr_cere3-zscore-Tceal3.png
saved figures/08_xchr_cere3-x1-Tceal3.png
saved figures/08_xchr_cere3-x2-Tceal3.png
[1] "Tceal5"
saved figures/08_xchr_cere3-raw-Tceal5.png
saved figures/08_xchr_cere3-smooth-Tceal5.png
saved figures/08_xchr_cere3-zscore-Tceal5.png
saved figures/08_xchr_cere3-x1-Tceal5.png
saved figures/08_xchr_cere3-x2-Tceal5.png
[1] "Tceal6"
saved figures/08_xchr_cere3-raw-Tceal6.png
saved figures/08_xchr_cere3-smooth-Tceal6.png
saved figures/08_xchr_cere3-zscore-Tceal6.png
saved figures/08_xchr_cere3-x1-Tceal6.png
saved figures/08_xchr_cere3-x2-Tceal6.png
[1] "Tceal8"
saved figures/08_xchr_cere3-raw-Tceal8.png
saved figures/08_xchr_cere3-smooth-Tceal8.png
saved figures/08_xchr_cere3-zscore-Tceal8.png
saved figures/08_xchr_cere3-x1-Tceal8.png
saved figures/08_xchr_cere3-x2-Tceal8.png
[1] "Tmem47"
saved figures/08_xchr_cere3-raw-Tmem47.png
saved figures/08_xchr_cere3-smooth-Tmem47.png
saved figures/08_xchr_cere3-zscore-Tmem47.png
saved figures/08_xchr_cere3-x1-Tmem47.png
saved figures/08_xchr_cere3-x2-Tmem47.png
[1] "Trappc2"
saved figures/08_xchr_cere3-raw-Trappc2.png
saved figures/08_xchr_cere3-smooth-Trappc2.png
saved figures/08_xchr_cere3-zscore-Trappc2.png
saved figures/08_xchr_cere3-x1-Trappc2.png
saved figures/08_xchr_cere3-x2-Trappc2.png
[1] "Tspan7"
saved figures/08_xchr_cere3-raw-Tspan7.png
saved figures/08_xchr_cere3-smooth-Tspan7.png
saved figures/08_xchr_cere3-zscore-Tspan7.png
saved figures/08_xchr_cere3-x1-Tspan7.png
saved figures/08_xchr_cere3-x2-Tspan7.png
[1] "Tsr2"
saved figures/08_xchr_cere3-raw-Tsr2.png
saved figures/08_xchr_cere3-smooth-Tsr2.png
saved figures/08_xchr_cere3-zscore-Tsr2.png
saved figures/08_xchr_cere3-x1-Tsr2.png
saved figures/08_xchr_cere3-x2-Tsr2.png
[1] "Uba1"
saved figures/08_xchr_cere3-raw-Uba1.png
saved figures/08_xchr_cere3-smooth-Uba1.png
saved figures/08_xchr_cere3-zscore-Uba1.png
saved figures/08_xchr_cere3-x1-Uba1.png
saved figures/08_xchr_cere3-x2-Uba1.png
[1] "Vma21"
saved figures/08_xchr_cere3-raw-Vma21.png
saved figures/08_xchr_cere3-smooth-Vma21.png
saved figures/08_xchr_cere3-zscore-Vma21.png
saved figures/08_xchr_cere3-x1-Vma21.png
saved figures/08_xchr_cere3-x2-Vma21.png
[1] "Wdr13"
saved figures/08_xchr_cere3-raw-Wdr13.png
saved figures/08_xchr_cere3-smooth-Wdr13.png
saved figures/08_xchr_cere3-zscore-Wdr13.png
saved figures/08_xchr_cere3-x1-Wdr13.png
saved figures/08_xchr_cere3-x2-Wdr13.png
[1] "Xist"
saved figures/08_xchr_cere3-raw-Xist.png
saved figures/08_xchr_cere3-smooth-Xist.png
saved figures/08_xchr_cere3-zscore-Xist.png
saved figures/08_xchr_cere3-x1-Xist.png
saved figures/08_xchr_cere3-x2-Xist.png
Gene I want to compare to other samples
myfit_cere <- spase(maternal_counts_matrix_cere, paternal_counts_matrix_cere, coords_cere,cores=1,verbose=T, df=5, genes = c('Morf4l2'), min.umi=100)
8937 genes pass min threshold of 100 pixels, 100 UMI
running on 1 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_cere,
matrix2 = paternal_counts_matrix_cere,
covariates = coords_cere,
spasefit = myfit_cere,
coords = coords_cere |> select(x,y) |> sample_n(10000),
genes = 'Morf4l2',
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_cere3'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Morf4l2"
saved figures/08_xchr_cere3-raw-Morf4l2.png
saved figures/08_xchr_cere3-smooth-Morf4l2.png
saved figures/08_xchr_cere3-zscore-Morf4l2.png
saved figures/08_xchr_cere3-x1-Morf4l2.png
saved figures/08_xchr_cere3-x2-Morf4l2.png
cere4 <- readRDS('results/rctd_cere_4_visium.rds')
maternal_counts_matrix_cere <- cere4@originalSpatialRNA@maternalCounts
paternal_counts_matrix_cere <- cere4@originalSpatialRNA@paternalCounts
coords_cere <- cere4@originalSpatialRNA@coords |> rownames_to_column()
xgenes <- rownames(maternal_counts_matrix_cere)[(rownames(maternal_counts_matrix_cere) %in% xchr_genes) & ((rowSums(maternal_counts_matrix_cere) + rowSums(paternal_counts_matrix_cere)) > 1000) & (rowSums(maternal_counts_matrix_cere)>0 & rowSums(paternal_counts_matrix_cere)>0)]
myfit_cere <- spase(maternal_counts_matrix_cere, paternal_counts_matrix_cere, coords_cere,cores=1,verbose=T, df=15, genes = xgenes)
1321 genes pass min threshold of 100 pixels, 500 UMI
running on 12 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|====== | 8%
|
|============ | 17%
|
|================== | 25%
|
|======================= | 33%
|
|============================= | 42%
|
|=================================== | 50%
|
|========================================= | 58%
|
|=============================================== | 67%
|
|==================================================== | 75%
|
|========================================================== | 83%
|
|================================================================ | 92%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_cere,
matrix2 = paternal_counts_matrix_cere,
covariates = coords_cere,
spasefit = myfit_cere,
coords = coords_cere |> select(x,y) |> filter(y > 7500), # not a lot of reads at the bottom
genes = xgenes,
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_cere4'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Bex2"
saved figures/08_xchr_cere4-raw-Bex2.png
saved figures/08_xchr_cere4-smooth-Bex2.png
saved figures/08_xchr_cere4-zscore-Bex2.png
saved figures/08_xchr_cere4-x1-Bex2.png
saved figures/08_xchr_cere4-x2-Bex2.png
[1] "Cdr1"
saved figures/08_xchr_cere4-raw-Cdr1.png
saved figures/08_xchr_cere4-smooth-Cdr1.png
saved figures/08_xchr_cere4-zscore-Cdr1.png
saved figures/08_xchr_cere4-x1-Cdr1.png
saved figures/08_xchr_cere4-x2-Cdr1.png
[1] "Gprasp1"
saved figures/08_xchr_cere4-raw-Gprasp1.png
saved figures/08_xchr_cere4-smooth-Gprasp1.png
saved figures/08_xchr_cere4-zscore-Gprasp1.png
saved figures/08_xchr_cere4-x1-Gprasp1.png
saved figures/08_xchr_cere4-x2-Gprasp1.png
[1] "Idh3g"
saved figures/08_xchr_cere4-raw-Idh3g.png
saved figures/08_xchr_cere4-smooth-Idh3g.png
saved figures/08_xchr_cere4-zscore-Idh3g.png
saved figures/08_xchr_cere4-x1-Idh3g.png
saved figures/08_xchr_cere4-x2-Idh3g.png
[1] "Ids"
saved figures/08_xchr_cere4-raw-Ids.png
saved figures/08_xchr_cere4-smooth-Ids.png
saved figures/08_xchr_cere4-zscore-Ids.png
saved figures/08_xchr_cere4-x1-Ids.png
saved figures/08_xchr_cere4-x2-Ids.png
[1] "Maged1"
saved figures/08_xchr_cere4-raw-Maged1.png
saved figures/08_xchr_cere4-smooth-Maged1.png
saved figures/08_xchr_cere4-zscore-Maged1.png
saved figures/08_xchr_cere4-x1-Maged1.png
saved figures/08_xchr_cere4-x2-Maged1.png
[1] "Pcsk1n"
saved figures/08_xchr_cere4-raw-Pcsk1n.png
saved figures/08_xchr_cere4-smooth-Pcsk1n.png
saved figures/08_xchr_cere4-zscore-Pcsk1n.png
saved figures/08_xchr_cere4-x1-Pcsk1n.png
saved figures/08_xchr_cere4-x2-Pcsk1n.png
[1] "Plp1"
saved figures/08_xchr_cere4-raw-Plp1.png
saved figures/08_xchr_cere4-smooth-Plp1.png
saved figures/08_xchr_cere4-zscore-Plp1.png
saved figures/08_xchr_cere4-x1-Plp1.png
saved figures/08_xchr_cere4-x2-Plp1.png
[1] "Rps4x"
saved figures/08_xchr_cere4-raw-Rps4x.png
saved figures/08_xchr_cere4-smooth-Rps4x.png
saved figures/08_xchr_cere4-zscore-Rps4x.png
saved figures/08_xchr_cere4-x1-Rps4x.png
saved figures/08_xchr_cere4-x2-Rps4x.png
[1] "Tceal5"
saved figures/08_xchr_cere4-raw-Tceal5.png
saved figures/08_xchr_cere4-smooth-Tceal5.png
saved figures/08_xchr_cere4-zscore-Tceal5.png
saved figures/08_xchr_cere4-x1-Tceal5.png
saved figures/08_xchr_cere4-x2-Tceal5.png
[1] "Tspan7"
saved figures/08_xchr_cere4-raw-Tspan7.png
saved figures/08_xchr_cere4-smooth-Tspan7.png
saved figures/08_xchr_cere4-zscore-Tspan7.png
saved figures/08_xchr_cere4-x1-Tspan7.png
saved figures/08_xchr_cere4-x2-Tspan7.png
[1] "Uba1"
saved figures/08_xchr_cere4-raw-Uba1.png
saved figures/08_xchr_cere4-smooth-Uba1.png
saved figures/08_xchr_cere4-zscore-Uba1.png
saved figures/08_xchr_cere4-x1-Uba1.png
saved figures/08_xchr_cere4-x2-Uba1.png
Add in ones to compare across samples; using lower df since fewer spots/UMIs sampled for these genes
myfit_cere <- spase(maternal_counts_matrix_cere, paternal_counts_matrix_cere, coords_cere,cores=1,verbose=T, df=5, genes = c('Morf4l2', 'Tceal3', 'Tceal6', 'Xist'), min.umi=100)
4848 genes pass min threshold of 100 pixels, 100 UMI
running on 4 user-specified genes
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
plotSpase(
matrix1 = maternal_counts_matrix_cere,
matrix2 = paternal_counts_matrix_cere,
covariates = coords_cere,
spasefit = myfit_cere,
coords = coords_cere |> select(x,y) |> filter(y > 7500), # not a lot of reads at the bottom
genes = c('Morf4l2', 'Tceal3', 'Tceal6','Xist'),
crosshairs = T,
crosshairs_diag = F,
point.size = 0.75,
size.scale = F,
theme = 'void',
void = T,
save = 'figures/08_xchr_cere4'
)
found 3 columns in covariates; going to assume that first column is pixel names, 2nd and 3rd column are 2D coordinates
[1] "Morf4l2"
saved figures/08_xchr_cere4-raw-Morf4l2.png
saved figures/08_xchr_cere4-smooth-Morf4l2.png
saved figures/08_xchr_cere4-zscore-Morf4l2.png
saved figures/08_xchr_cere4-x1-Morf4l2.png
saved figures/08_xchr_cere4-x2-Morf4l2.png
[1] "Tceal3"
saved figures/08_xchr_cere4-raw-Tceal3.png
saved figures/08_xchr_cere4-smooth-Tceal3.png
saved figures/08_xchr_cere4-zscore-Tceal3.png
saved figures/08_xchr_cere4-x1-Tceal3.png
saved figures/08_xchr_cere4-x2-Tceal3.png
[1] "Tceal6"
saved figures/08_xchr_cere4-raw-Tceal6.png
saved figures/08_xchr_cere4-smooth-Tceal6.png
saved figures/08_xchr_cere4-zscore-Tceal6.png
saved figures/08_xchr_cere4-x1-Tceal6.png
saved figures/08_xchr_cere4-x2-Tceal6.png
[1] "Xist"
saved figures/08_xchr_cere4-raw-Xist.png
saved figures/08_xchr_cere4-smooth-Xist.png
saved figures/08_xchr_cere4-zscore-Xist.png
saved figures/08_xchr_cere4-x1-Xist.png
saved figures/08_xchr_cere4-x2-Xist.png
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.