#' Likelihood Factor Estimated from Data using sl3.
#'
#' Uses an \code{sl3} learner to estimate a likelihood factor from data.
#' Inherits from \code{\link{LF_base}}; see that page for documentation on likelihood factors in general.
#'
#' @importFrom R6 R6Class
#' @importFrom uuid UUIDgenerate
#' @importFrom methods is
#' @family Likelihood objects
#' @keywords data
#'
#' @return \code{LF_base} object
#'
#' @format \code{\link{R6Class}} object.
#'
#' @section Constructor:
#' \code{define_lf(LF_fit, name, learner, ..., type = "density")}
#'
#' \describe{
#' \item{\code{name}}{character, the name of the factor. Should match a node name in the nodes specified by \code{\link{tmle3_Task}$npsem}
#' }
#' \item{\code{learner}}{An sl3 learner to be used to estimate the factor
#' }
#' \item{\code{...}}{Not currently used.
#' }
#' \item{\code{type}}{character, either "density", for conditional density or, "mean" for conditional mean
#' }
#' }
#'
#' @section Fields:
#' \describe{
#' \item{\code{learner}}{The learner or learner fit object}
#' }
#'
#' @export
LF_fit <- R6Class(
classname = "LF_fit",
portable = TRUE,
class = TRUE,
inherit = LF_base,
public = list(
initialize = function(name, learner, ..., type = "density") {
super$initialize(name, ..., type = type)
private$.learner <- learner
},
delayed_train = function(tmle_task) {
# just return prefit learner if that's what we have
# otherwise, make a delayed fit and return that
if (self$learner$is_trained) {
return(self$learner)
}
outcome_node <- self$name
# fit scaled task for bounded continuous
learner_task <- tmle_task$get_regression_task(outcome_node, scale = TRUE)
learner_fit <- delayed_learner_train(self$learner, learner_task)
return(learner_fit)
},
train = function(tmle_task, learner_fit) {
super$train(tmle_task)
private$.learner <- learner_fit
},
get_mean = function(tmle_task, fold_number) {
learner_task <- tmle_task$get_regression_task(self$name)
learner <- self$learner
preds <- learner$predict_fold(learner_task, fold_number)
# unscale preds (to handle bounded continuous)
preds_unscaled <- tmle_task$unscale(preds, self$name)
return(preds_unscaled)
},
get_density = function(tmle_task, fold_number) {
learner_task <- tmle_task$get_regression_task(self$name)
learner <- self$learner
preds <- learner$predict_fold(learner_task, fold_number)
outcome_type <- self$learner$training_task$outcome_type
observed <- outcome_type$format(learner_task$Y)
if (outcome_type$type == "binomial") {
likelihood <- ifelse(observed == 1, preds, 1 - preds)
} else if (outcome_type$type == "categorical") {
unpacked <- sl3::unpack_predictions(preds)
index_mat <- cbind(seq_along(observed), observed)
likelihood <- unpacked[index_mat]
} else if (outcome_type$type == "continuous") {
likelihood <- unlist(preds)
} else {
stop(sprintf("unsupported outcome_type: %s", outcome_type$type))
}
return(likelihood)
}
),
active = list(
learner = function() {
return(private$.learner)
}
),
private = list(
.name = NULL,
.learner = NULL
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.