#' @title Non-parametric Bootstrapping
#' @description Estimate the standard error and the bias of an estimator using R
#' @param data he data as a vector, matrix or data frame
#' @param func function to be bootstrapped
#' @param B the number of replicates
#' @return a list of standard error and bias
#' @examples
#' \dontrun{
#' data <- 20 * rbeta(1000,2,3)
#' boot(data = data, func = mean, B = 2000)
#' }
#' @export
boot <- function(data,func=NULL, B){
theta.hat <- func(data)
#set up the bootstrap
n <- length(data) #sample size
theta.b <- numeric(B) #storage for replicates
for (b in 1:B) {
#randomly select the indices
i <- sample(1:n, size = n, replace = TRUE)
dat <- data[i] #i is a vector of indices
theta.b[b] <- func(dat)
}
#bootstrap estimate of standard error of R
bias.theta <- mean(theta.b - theta.hat)
se <- sd(theta.b)
return(list(bias.b = bias.theta,se.b = se))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.