RoughnessFFT: Calculation of the Roughness of Acoustical Musical Signals

Description Usage Arguments Details Value Author(s) References Examples

Description

Based on Leman (2000), this function calculates three outputs:

Usage

1
RoughnessFFT(inObjANI, ...)

Arguments

inObjANI

an object of class ANI which must contain an auditory nerve image, its sample frequency and the filterbank frequencies used by the auditory model.

inANIFreq

sample frequency of the input signal (in samples per second).

inANIFilterFreqs

filterbank frequencies used by the auditory model.

inFrameWidth

the width of the window for analysing the signal (in s) if empty or not specified, 0.2 s is used by default.

inFrameStepSize

the stepsize or time interval between two inFrameWidthInSampless (in s).

Details

For now, the roughness values are dependend on the used frame width. So, to make usefull comparisons, only results obtained using the same frame width should be compared (this should be fixed in the future...)

Value

outFFTMatrix1

visualisation of energy over channels

outFFTMatrix2

visualisation of energy spectrum for synchronization (synchronisation index SI)

outRoughness

roughness over signal.

outSampleFreq

sampling rate of outRoughness (in Hz).

PlotRoughness

Author(s)

Marc Vidal (R version). Based on the original code from Marc Leman and Koen Tanghe.

References

Leman, M. (2000). Visualization and calculation of the roughness of acoustical musical signals using the synchronization index model (SIM). In: Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy.

Examples

1
2
3
4
probe <- ShepardTone(293.66, 1, indBLevel = -20)
s <- c(SchumannKurioseGeschichte, numeric(2205), probe)
ANIs <- CalcANI(s, 22050)
Rs <- RoughnessFFT(ANIs)

m-vidal/pv01 documentation built on Dec. 2, 2020, 1:24 a.m.