Description Usage Arguments Details Value See Also Examples
This function trains a shrinkage discriminant analysis (sda) classifier using James-Stein-type shrinkage estimation. It returns the trained model, a feature ranking and a data.frame describing the features used for the model.
1  | Prediction(model, abt, feats, ref, verb = FALSE)
 | 
model | 
 
  | 
abt | 
 
  | 
feats | 
 
  | 
ref | 
 
  | 
verb | 
 
  | 
This function uses the sda package for training and ranking 
of a sda classifier.
Shrinkage intensity for correlation matrix, variances, and frequencies is 
estimated from the data.
With diag set to TRUE only the diagonal of the covariance 
matrix is used. This speeds up the process and uses less memory.
list of 3 objects
class factor containing predicted 
classes for test data
posterior num matrix containing posterior 
probabilities of each class for test data
Other machine learning: CV,
Convert, FeatureExtraction,
Training
1 2 3 4 5 6 7 8 9 10 11  | abt1 <- matrix(sample(0:1, 1000*100, replace = TRUE), 1000, 100)
feats1 <- data.frame(name = "test", value = 1:100)
labs1 <- sample(0:1, 1000, replace = TRUE)
model <- Training(abt1, labs1, feats1, n_max = 20)
str(model)
abt2 <- matrix(sample(0:1, 1000*100, replace = TRUE), 1000, 100)
feats2 <- data.frame(name = "test", value = 100:1)
labs2 <- sample(0:1, 1000, replace = TRUE)
pred <- Prediction(model$Model, abt2, feats2, model$FeatureList)
str(pred)
sum(pred$class == labs2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.