biqq_lower: biqq from lower level model, taking data as arguments

Description Usage Arguments Value Examples

Description

Prior information is provided for Y_u_prior (16 elements) and K_u_prior (4 elements)

Usage

1
2
3
4
5
biqq_lower(fit = fit_biqq_lower, XY = c(0, 0, 0, 0), XYK = c(0, 0, 0,
  0, 0, 0, 0, 0), XYK_data = NULL, Y_u_prior = rep(0.5, 16),
  K_u_prior = rep(0.5, 4), pi_alpha = matrix(0.5, 16, 4),
  pi_beta = matrix(0.5, 16, 4), doubly_decisive = FALSE, iter = 1000,
  chains = 2, ...)

Arguments

fit

a fitted biqq_lower model

XY

XY data – 4-vector 00 01 10 11

XYK

XYK data – 12-vector 000 001 010 011...

XYK_data

XYK data provided as a dataframe

Y_u_prior

Dirichlet hyperparameters on 16 u_Y types

K_u_prior

Dirichlet hyperparameters on 4 u_K types

pi_alpha

16 alpha Beta pramaters for pis

doubly_decisive

if TRUE pobative value defaults to clue traces for a and b types (not extreme 0/1)

pi_alpha

16 beta Beta pramaters for pis

Value

A stan object

Examples

1
2
print(biqq_lower(XYK = c(0, 1, 1, 0, 1, 0, 0, 1)))
print(biqq_lower(XYK = c(0, 1, 1, 0, 1, 0, 0, 1), doubly_decisive = TRUE))

macartan/biqq documentation built on May 6, 2019, 6:03 p.m.