#' @title Fit Bayesian CJS Model
#'
#' @description This wrapper function writes a text file describing a Bayesian Cormack Jolly-Seber model in the JAGS language, prepares the data, runs the MCMC and summarises the results.
#'
#' @author Kevin See and Mike Ackerman
#'
#' @inheritParams write_bayes_cjs
#' @inheritParams prep_jags_cjs
#' @inheritParams run_jags_cjs
#' @inheritParams summarise_jags_cjs
#'
#'
#' @importFrom postpack write_model
#' @import dplyr
#' @import rjags
#' @importFrom tidyr nest
#' @importFrom purrr map_dbl
#' @importFrom postpack post_summ
#'
#'
#' @export
#' @return tibble
fit_bayes_cjs = function(file_path = NULL,
cap_hist_wide = NULL,
tag_meta = NULL,
drop_col_nm = 'duty_cycle',
drop_values = c('batch_2', 'batch_3'),
n_chains = 4,
n_adapt = 1000,
n_burnin = 2500,
n_iter = 2500,
n_thin = 5,
params_to_save = c("phi", "p", "survship"),
rng_seed = 4,
...) {
# write the text file in JAGS language
write_bayes_cjs(file_path)
# prepare data to be fed to JAGS
jags_data = prep_jags_cjs(cap_hist_wide,
tag_meta,
drop_col_nm,
drop_values)
# run the MCMC
post = run_jags_cjs(file_path,
jags_data,
n_chains,
n_adapt,
n_burnin,
n_iter,
n_thin,
params_to_save,
rng_seed)
# extract summary of MCMC
param_summ = summarise_jags_cjs(post,
p = params_to_save,
...)
# add site names to summary tibble
param_summ = param_summ %>%
left_join(tibble(site = colnames(jags_data$y)) %>%
mutate(site = factor(site, levels = site),
site_num = as.integer(site))) %>%
select(param_grp, site_num,
site,
param,
everything())
return(param_summ)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.